grammar implementation with lexicalized tree adjoining
play

Grammar Implementation with Lexicalized Tree Adjoining Grammars and - PowerPoint PPT Presentation

Grammar Implementation with Lexicalized Tree Adjoining Grammars and Frame Semantics Frame semantics Laura Kallmeyer, Timm Lichte, Rainer Osswald & Simon Petitjean University of Dsseldorf DGfS CL Fall School, September 14, 2017 SFB 991


  1. Introduction to frame semantics Frames according to this course Example actor x man house locomotion e z mover manner in-region path endp part-of walking path region region Ingredients Atributes (funct. relations): actor , mover , path , manner , in-region , ... Type symbols: locomotion , man , path , walking , region , ... Proper relations: part-of Node labels (variables): e , x , z Core property Every node is reachable from some labeled “base” node via atributes. Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 20 11

  2. Introduction to frame semantics Example (2) Anna ran Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 21 12

  3. Introduction to frame semantics Example (2) Anna ran ‘Anna’ running actor name e person Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 22 12

  4. Introduction to frame semantics Example (2) Anna ran to the station. ‘Anna’ running actor name e person Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 23 12

  5. Introduction to frame semantics Example (2) Anna ran to the station. bounded-motion ‘Anna’ running actor name e person final theme loc-stage loc station Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 24 12

  6. Introduction to frame semantics Example (2) Anna ran to the station.    running ∧ bounded-motion  bounded-motion ‘Anna’ � person �   running     actor name  actor  1 e   name ‘Anna’   person e         loc-stage final     theme      final theme 1            loc [ station ]     loc-stage loc station Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 25 12

  7. Introduction to frame semantics Example (2) Anna ran to the station.    running ∧ bounded-motion  bounded-motion ‘Anna’ � person �   running     actor name  actor  1 e   name ‘Anna’   person e         loc-stage final     theme      final theme 1            loc [ station ]     loc-stage loc station Atribute-value logic e · ( running ∧ bounded-motion ∧ actor : ( person ∧ name � ‘Anna’ ) actor � final theme ∧ final : ( loc-stage ∧ loc : station )) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 26 12

  8. Introduction to frame semantics Example (2) Anna ran to the station.    running ∧ bounded-motion  bounded-motion ‘Anna’ � person �   running     actor name  actor  1 e   name ‘Anna’   person e         loc-stage final     theme      final theme 1            loc [ station ]     loc-stage loc station Atribute-value logic e · ( running ∧ bounded-motion ∧ actor : ( person ∧ name � ‘Anna’ ) actor � final theme ∧ final : ( loc-stage ∧ loc : station )) Translation into first-order logic ∃ x ∃ s ∃ y ( running ( e ) ∧ bounded-motion ( e ) ∧ actor ( e , x ) ∧ person ( x ) ∧ name ( x , ‘Anna’ ) ∧ final ( e , s ) ∧ loc-stage ( s ) ∧ theme ( s , x ) ∧ loc ( s , y ) ∧ station ( y )) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 27 12

  9. Introduction to frame semantics Example (2) Anna ran to the station.    running ∧ bounded-motion  bounded-motion ‘Anna’ � person �   running     actor name  actor  1 e   name ‘Anna’   person e         loc-stage final     theme      final theme 1            loc [ station ]     loc-stage loc station Atribute-value logic e · ( running ∧ bounded-motion ∧ actor : ( person ∧ name � ‘Anna’ ) actor � final theme ∧ final : ( loc-stage ∧ loc : station )) Constraints (short for ∀ e ( running ( e ) → activity ( e )) ), running ⇛ activity loc-stage ⇛ theme : ⊤ ∧ loc : ⊤ , ... Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 28 12

  10. Introduction to frame semantics Example Lexical decomposition templates [Rappaport Hovav/Levin 1998] (3) [[ x ACT ] CAUSE [ BECOME [ y BROKEN ]]] Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 29 13

  11. Introduction to frame semantics Example Lexical decomposition templates [Rappaport Hovav/Levin 1998] (3) [[ x ACT ] CAUSE [ BECOME [ y BROKEN ]]] causation   CAUSE EFFECT  causation  � activity �   change-of-state <   activity    cause   effector x    FINAL ACTOR        change-of-state  broken-stage   � broke-stage �        effect    x PATIENT     final     patient y     y cause < effect Description in atribute-value logic causation ∧ cause : activity ∧ cause actor � x ∧ effect ( change-of-state ∧ final : ( broken-stage ∧ patient � y )) ∧ cause < effect Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 30 13

  12. Introduction to frame semantics Example Lexical decomposition templates [Rappaport Hovav/Levin 1998] (3) [[ x ACT ] CAUSE [ BECOME [ y BROKEN ]]] causation   CAUSE EFFECT  causation  � activity �   change-of-state <   activity    cause   effector x    FINAL ACTOR        change-of-state  broken-stage   � broke-stage �        effect    x PATIENT     final     patient y     y cause < effect Description in atribute-value logic causation ∧ cause : activity ∧ cause actor � x ∧ effect ( change-of-state ∧ final : ( broken-stage ∧ patient � y )) ∧ cause < effect Translation into first-order logic λ e ∃ e ′ ∃ e ′′ ∃ s ( causation ( e ) ∧ cause ( e , e ′ ) ∧ effect ( e , e ′′ ) ∧ e ′ < e ′′ ∧ activity ( e ′ ) ∧ actor ( e ′ , x ) ∧ change-of-state ( e ′′ ) ∧ final ( e ′′ , s ) ∧ broken-stage ( s ) ∧ patient ( s , y )) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 31 13

  13. Outline of today’s course Introduction to frame semantics 1 Frames in the sense of Fillmore and Barsalou Frames according to this course Formalization of frames 2 Atribute-value descriptions and formulas Formal definition of frames Frames as models Subsumption and unification Atribute-value constraints Further topics 3 Frames versus feature structures Type constraints versus type hierarchy Frame semantics: extensions 4 Summary and outlook 5 Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 32 14

  14. Atribute-value descriptions Vocabulary / Signature Atr atributes ( = dyadic functional relation symbols) Rel (proper) relation symbols Type type symbols ( = monadic predicates) Nname node names (“nominals”) } Nlabel node labels Nvar node variables Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 33 15

  15. Atribute-value descriptions Vocabulary / Signature Atr atributes ( = dyadic functional relation symbols) Rel (proper) relation symbols Type type symbols ( = monadic predicates) Nname node names (“nominals”) } Nlabel node labels Nvar node variables Primitive atribute-value descriptions (pAVDesc) t | p : t | p � q | [ p 1 , . . . , p n ] : r | p � k ( t ∈ Type, r ∈ Rel, p , q , p i ∈ Atr ∗ , k ∈ Nlabel) Semantics ⎡ ⎤ ⎢ ⎥ P [ P [ t ] ] P ∶ t P ⎢ ⎥ P 1 t [ P , Q ]∶ r ⎢ ⎥ ⎢ ⎥ r ⎣ Q 2 ⎦ r ( 1 , 2 ) Q P ⎡ ⎤ ⎢ ⎥ P ≐ Q ⎢ ⎥ 1 P ⎢ ⎥ ⎢ ⎥ P [ P k [ ] ] ⎣ 1 ⎦ P ≜ k Q Q k Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 34 15

  16. Atribute-value formulas Primitive atribute-value formulas (pAVForm) k · p : t | k · p � l · q | � k 1 · p 1 , . . . , k n · p n � : r ( t ∈ Type, r ∈ Rel, p , q , p i ∈ Atr ∗ , k , l , k i ∈ Nlabel) Semantics P P k [ P [ t ] ] 1 ] k ⋅ P ∶ t k [ P t ⟨ k ⋅ P , l ⋅ Q ⟩∶ r k k r 2 ] l [ Q l r ( 1 , 2 ) 1 ] k [ P Q k ⋅ P ≜ l ⋅ Q P k 1 ] l [ Q Q l Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 35 16

  17. Atribute-value formulas Primitive atribute-value formulas (pAVForm) k · p : t | k · p � l · q | � k 1 · p 1 , . . . , k n · p n � : r ( t ∈ Type, r ∈ Rel, p , q , p i ∈ Atr ∗ , k , l , k i ∈ Nlabel) Semantics P P k [ P [ t ] ] 1 ] k ⋅ P ∶ t k [ P t ⟨ k ⋅ P , l ⋅ Q ⟩∶ r k k r 2 ] l [ Q l r ( 1 , 2 ) 1 ] k [ P Q k ⋅ P ≜ l ⋅ Q P k 1 ] l [ Q Q l Formal definitions (fairly standard) Set / universe of “nodes” V Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 36 16

  18. Atribute-value formulas Primitive atribute-value formulas (pAVForm) k · p : t | k · p � l · q | � k 1 · p 1 , . . . , k n · p n � : r ( t ∈ Type, r ∈ Rel, p , q , p i ∈ Atr ∗ , k , l , k i ∈ Nlabel) Semantics P P k [ P [ t ] ] 1 ] k ⋅ P ∶ t k [ P t ⟨ k ⋅ P , l ⋅ Q ⟩∶ r k k r 2 ] l [ Q l r ( 1 , 2 ) 1 ] k [ P Q k ⋅ P ≜ l ⋅ Q P k 1 ] l [ Q Q l Formal definitions (fairly standard) Set / universe of “nodes” V Interpretation function I : Atr → [ V ⇀ V ] , Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 37 16

  19. Atribute-value formulas Primitive atribute-value formulas (pAVForm) k · p : t | k · p � l · q | � k 1 · p 1 , . . . , k n · p n � : r ( t ∈ Type, r ∈ Rel, p , q , p i ∈ Atr ∗ , k , l , k i ∈ Nlabel) Semantics P P k [ P [ t ] ] 1 ] k ⋅ P ∶ t k [ P t ⟨ k ⋅ P , l ⋅ Q ⟩∶ r k k r 2 ] l [ Q l r ( 1 , 2 ) 1 ] k [ P Q k ⋅ P ≜ l ⋅ Q P k 1 ] l [ Q Q l Formal definitions (fairly standard) Set / universe of “nodes” V Interpretation function I : Atr → [ V ⇀ V ] , Type → ℘ ( V ) , Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 38 16

  20. Atribute-value formulas Primitive atribute-value formulas (pAVForm) k · p : t | k · p � l · q | � k 1 · p 1 , . . . , k n · p n � : r ( t ∈ Type, r ∈ Rel, p , q , p i ∈ Atr ∗ , k , l , k i ∈ Nlabel) Semantics P P k [ P [ t ] ] 1 ] k ⋅ P ∶ t k [ P t ⟨ k ⋅ P , l ⋅ Q ⟩∶ r k k r 2 ] l [ Q l r ( 1 , 2 ) 1 ] k [ P Q k ⋅ P ≜ l ⋅ Q P k 1 ] l [ Q Q l Formal definitions (fairly standard) Set / universe of “nodes” V Interpretation function I : Atr → [ V ⇀ V ] , Type → ℘ ( V ) , n ℘ ( V n ) , Rel → � Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 39 16

  21. Atribute-value formulas Primitive atribute-value formulas (pAVForm) k · p : t | k · p � l · q | � k 1 · p 1 , . . . , k n · p n � : r ( t ∈ Type, r ∈ Rel, p , q , p i ∈ Atr ∗ , k , l , k i ∈ Nlabel) Semantics P P k [ P [ t ] ] 1 ] k ⋅ P ∶ t k [ P t ⟨ k ⋅ P , l ⋅ Q ⟩∶ r k k r 2 ] l [ Q l r ( 1 , 2 ) 1 ] k [ P Q k ⋅ P ≜ l ⋅ Q P k 1 ] l [ Q Q l Formal definitions (fairly standard) Set / universe of “nodes” V Interpretation function I : Atr → [ V ⇀ V ] , Type → ℘ ( V ) , n ℘ ( V n ) , Nname → V Rel → � Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 40 16

  22. Atribute-value formulas Primitive atribute-value formulas (pAVForm) k · p : t | k · p � l · q | � k 1 · p 1 , . . . , k n · p n � : r ( t ∈ Type, r ∈ Rel, p , q , p i ∈ Atr ∗ , k , l , k i ∈ Nlabel) Semantics P P k [ P [ t ] ] 1 ] k ⋅ P ∶ t k [ P t ⟨ k ⋅ P , l ⋅ Q ⟩∶ r k k r 2 ] l [ Q l r ( 1 , 2 ) 1 ] k [ P Q k ⋅ P ≜ l ⋅ Q P k 1 ] l [ Q Q l Formal definitions (fairly standard) Set / universe of “nodes” V Interpretation function I : Atr → [ V ⇀ V ] , Type → ℘ ( V ) , n ℘ ( V n ) , Nname → V Rel → � (Partial) variable assignment g : Nvar ⇀ V Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 41 16

  23. Satisfaction of AV descriptions and formulas Formal definitions (cont’d) Abbreviation: I g ( k ) = v for k ∈ Nlabel iff I ( k ) = v if k ∈ Nname and g ( k ) = v if k ∈ Nvar ( g ( k ) defined) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 42 17

  24. Satisfaction of AV descriptions and formulas Formal definitions (cont’d) Abbreviation: I g ( k ) = v for k ∈ Nlabel iff I ( k ) = v if k ∈ Nname and g ( k ) = v if k ∈ Nvar ( g ( k ) defined) Satisfaction of primitive descriptions � V , I , g � , v � t iff v ∈ I ( t ) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 43 17

  25. Satisfaction of AV descriptions and formulas Formal definitions (cont’d) Abbreviation: I g ( k ) = v for k ∈ Nlabel iff I ( k ) = v if k ∈ Nname and g ( k ) = v if k ∈ Nvar ( g ( k ) defined) Satisfaction of primitive descriptions � V , I , g � , v � t iff v ∈ I ( t ) � V , I , g � , v � p : t iff I ( p )( v ) ∈ I ( t ) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 44 17

  26. Satisfaction of AV descriptions and formulas Formal definitions (cont’d) Abbreviation: I g ( k ) = v for k ∈ Nlabel iff I ( k ) = v if k ∈ Nname and g ( k ) = v if k ∈ Nvar ( g ( k ) defined) Satisfaction of primitive descriptions � V , I , g � , v � t iff v ∈ I ( t ) � V , I , g � , v � p : t iff I ( p )( v ) ∈ I ( t ) � V , I , g � , v � p � q iff I ( p )( v ) = I ( q )( v ) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 45 17

  27. Satisfaction of AV descriptions and formulas Formal definitions (cont’d) Abbreviation: I g ( k ) = v for k ∈ Nlabel iff I ( k ) = v if k ∈ Nname and g ( k ) = v if k ∈ Nvar ( g ( k ) defined) Satisfaction of primitive descriptions � V , I , g � , v � t iff v ∈ I ( t ) � V , I , g � , v � p : t iff I ( p )( v ) ∈ I ( t ) � V , I , g � , v � p � q iff I ( p )( v ) = I ( q )( v ) � V , I , g � , v � [ p 1 , . . . , p n ] : r iff �I ( p 1 )( v ) , . . . , I ( p n )( v ) � ∈ I ( r ) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 46 17

  28. Satisfaction of AV descriptions and formulas Formal definitions (cont’d) Abbreviation: I g ( k ) = v for k ∈ Nlabel iff I ( k ) = v if k ∈ Nname and g ( k ) = v if k ∈ Nvar ( g ( k ) defined) Satisfaction of primitive descriptions � V , I , g � , v � t iff v ∈ I ( t ) � V , I , g � , v � p : t iff I ( p )( v ) ∈ I ( t ) � V , I , g � , v � p � q iff I ( p )( v ) = I ( q )( v ) � V , I , g � , v � [ p 1 , . . . , p n ] : r iff �I ( p 1 )( v ) , . . . , I ( p n )( v ) � ∈ I ( r ) iff I ( p )( v ) = I g ( k ) ( k ∈ Nlabel) � V , I , g � , v � p � k Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 47 17

  29. Satisfaction of AV descriptions and formulas Formal definitions (cont’d) Abbreviation: I g ( k ) = v for k ∈ Nlabel iff I ( k ) = v if k ∈ Nname and g ( k ) = v if k ∈ Nvar ( g ( k ) defined) Satisfaction of primitive descriptions � V , I , g � , v � t iff v ∈ I ( t ) � V , I , g � , v � p : t iff I ( p )( v ) ∈ I ( t ) � V , I , g � , v � p � q iff I ( p )( v ) = I ( q )( v ) � V , I , g � , v � [ p 1 , . . . , p n ] : r iff �I ( p 1 )( v ) , . . . , I ( p n )( v ) � ∈ I ( r ) iff I ( p )( v ) = I g ( k ) ( k ∈ Nlabel) � V , I , g � , v � p � k Satisfaction of primitive formulas � V , I , g � � k · p : t iff I ( p )( I g ( k )) ∈ I ( t ) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 48 17

  30. Satisfaction of AV descriptions and formulas Formal definitions (cont’d) Abbreviation: I g ( k ) = v for k ∈ Nlabel iff I ( k ) = v if k ∈ Nname and g ( k ) = v if k ∈ Nvar ( g ( k ) defined) Satisfaction of primitive descriptions � V , I , g � , v � t iff v ∈ I ( t ) � V , I , g � , v � p : t iff I ( p )( v ) ∈ I ( t ) � V , I , g � , v � p � q iff I ( p )( v ) = I ( q )( v ) � V , I , g � , v � [ p 1 , . . . , p n ] : r iff �I ( p 1 )( v ) , . . . , I ( p n )( v ) � ∈ I ( r ) iff I ( p )( v ) = I g ( k ) ( k ∈ Nlabel) � V , I , g � , v � p � k Satisfaction of primitive formulas � V , I , g � � k · p : t iff I ( p )( I g ( k )) ∈ I ( t ) iff I ( p )( I � V , I , g � � k · p � l · q g ( k )) = I ( q )( I g ( l )) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 49 17

  31. Satisfaction of AV descriptions and formulas Formal definitions (cont’d) Abbreviation: I g ( k ) = v for k ∈ Nlabel iff I ( k ) = v if k ∈ Nname and g ( k ) = v if k ∈ Nvar ( g ( k ) defined) Satisfaction of primitive descriptions � V , I , g � , v � t iff v ∈ I ( t ) � V , I , g � , v � p : t iff I ( p )( v ) ∈ I ( t ) � V , I , g � , v � p � q iff I ( p )( v ) = I ( q )( v ) � V , I , g � , v � [ p 1 , . . . , p n ] : r iff �I ( p 1 )( v ) , . . . , I ( p n )( v ) � ∈ I ( r ) iff I ( p )( v ) = I g ( k ) ( k ∈ Nlabel) � V , I , g � , v � p � k Satisfaction of primitive formulas � V , I , g � � k · p : t iff I ( p )( I g ( k )) ∈ I ( t ) iff I ( p )( I � V , I , g � � k · p � l · q g ( k )) = I ( q )( I g ( l )) � V , I , g � � � k 1 · p 1 , . . . , k n · p n � : r iff �I ( p 1 )( I g ( k 1 )) , . . . , I g ( p n )( I ( k n )) � ∈ I ( r ) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 50 17

  32. Satisfaction of AV descriptions and formulas Formal definitions (cont’d) Abbreviation: I g ( k ) = v for k ∈ Nlabel iff I ( k ) = v if k ∈ Nname and g ( k ) = v if k ∈ Nvar ( g ( k ) defined) Satisfaction of primitive descriptions � V , I , g � , v � t iff v ∈ I ( t ) � V , I , g � , v � p : t iff I ( p )( v ) ∈ I ( t ) � V , I , g � , v � p � q iff I ( p )( v ) = I ( q )( v ) � V , I , g � , v � [ p 1 , . . . , p n ] : r iff �I ( p 1 )( v ) , . . . , I ( p n )( v ) � ∈ I ( r ) iff I ( p )( v ) = I g ( k ) ( k ∈ Nlabel) � V , I , g � , v � p � k Satisfaction of primitive formulas � V , I , g � � k · p : t iff I ( p )( I g ( k )) ∈ I ( t ) iff I ( p )( I � V , I , g � � k · p � l · q g ( k )) = I ( q )( I g ( l )) � V , I , g � � � k 1 · p 1 , . . . , k n · p n � : r iff �I ( p 1 )( I g ( k 1 )) , . . . , I g ( p n )( I ( k n )) � ∈ I ( r ) Satisfaction of Boolean combinations as usual. Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 51 17

  33. Frames defined Frame F over � Atr , Type , Rel , Nname , Nvar � : F = � V , I , g � , with V finite, such that every node v ∈ V is reachable from some labeled node w ∈ V via an atribute path, Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 52 18

  34. Frames defined Frame F over � Atr , Type , Rel , Nname , Nvar � : F = � V , I , g � , with V finite, such that every node v ∈ V is reachable from some labeled node w ∈ V via an atribute path, i.e., (i) w = I g ( k ) for some k ∈ Nlabel ( = Nname ∪ Nvar ) and (ii) v = I ( p )( w ) for some p ∈ Atr ∗ . Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 53 18

  35. Frames defined Frame F over � Atr , Type , Rel , Nname , Nvar � : F = � V , I , g � , with V finite, such that every node v ∈ V is reachable from some labeled node w ∈ V via an atribute path, i.e., (i) w = I g ( k ) for some k ∈ Nlabel ( = Nname ∪ Nvar ) and (ii) v = I ( p )( w ) for some p ∈ Atr ∗ . Example actor x man house locomotion e z mover manner in-region path endp part-of walking path region region Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 54 18

  36. Frames as models of AV formulas A frame F = � V , I , g � is a model of an AV formula ϕ iff F � ϕ . Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 55 19

  37. Frames as models of AV formulas A frame F = � V , I , g � is a model of an AV formula ϕ iff F � ϕ . Example actor x man house locomotion e z mover F = manner in-region path endp part-of walking path region region Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 56 19

  38. Frames as models of AV formulas A frame F = � V , I , g � is a model of an AV formula ϕ iff F � ϕ . Example actor x man house locomotion e z mover F = manner in-region path endp part-of walking path region region F � Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 57 19

  39. Frames as models of AV formulas A frame F = � V , I , g � is a model of an AV formula ϕ iff F � ϕ . Example actor x man house locomotion e z mover F = manner in-region path endp part-of walking path region region F � e · locomotion Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 58 19

  40. Frames as models of AV formulas A frame F = � V , I , g � is a model of an AV formula ϕ iff F � ϕ . Example actor x man house locomotion e z mover F = manner in-region path endp part-of walking path region region F � e · locomotion F � e · ( locomotion ∧ actor : man ) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 59 19

  41. Frames as models of AV formulas A frame F = � V , I , g � is a model of an AV formula ϕ iff F � ϕ . Example actor x man house locomotion e z mover F = manner in-region path endp part-of walking path region region F � e · locomotion F � e · ( locomotion ∧ actor : man ) F � e · ( locomotion ∧ actor � x ) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 60 19

  42. Frames as models of AV formulas A frame F = � V , I , g � is a model of an AV formula ϕ iff F � ϕ . Example actor x man house locomotion e z mover F = manner in-region path endp part-of walking path region region F � e · locomotion F � e · ( locomotion ∧ actor : man ) F � e · ( locomotion ∧ actor � x ) F � x · man Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 61 19

  43. Frames as models of AV formulas A frame F = � V , I , g � is a model of an AV formula ϕ iff F � ϕ . Example actor x man house locomotion e z mover F = manner in-region path endp part-of walking path region region F � e · locomotion F � e · ( locomotion ∧ actor : man ) F � e · ( locomotion ∧ actor � x ) F � x · man ∧ z · house Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 62 19

  44. Frames as models of AV formulas A frame F = � V , I , g � is a model of an AV formula ϕ iff F � ϕ . Example actor x man house locomotion e z mover F = manner in-region path endp part-of walking path region region F � e · locomotion F � e · ( locomotion ∧ actor : man ) F � e · ( locomotion ∧ actor � x ) F � x · man ∧ z · house F � e · ( actor � mover ) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 63 19

  45. Frames as models of AV formulas A frame F = � V , I , g � is a model of an AV formula ϕ iff F � ϕ . Example actor x man house locomotion e z mover F = manner in-region path endp part-of walking path region region F � e · locomotion F � e · ( locomotion ∧ actor : man ) F � e · ( locomotion ∧ actor � x ) F � x · man ∧ z · house F � e · ( actor � mover ) F � � e · path endp , z · in-region � : part-of Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 64 19

  46. Subsumption and unification Subsumption F 1 = � V 1 , I 1 , g 1 � subsumes F 2 = � V 2 , I 2 , g 2 � ( F 1 ⊑ F 2 ) iff there is a (necessarily unique) morphism h : F 1 → F 2 , i.e., a function h : V 1 → V 2 such that (i) I 1 ( f )( v )) , if I 1 ( f )( v ) is defined, f ∈ Atr, v ∈ V 1 , 2 ( f )( h ( v )) = h ( I (ii) h ( I 1 ( t )) ⊆ I 2 ( t ) , for t ∈ Type (iii) h ( I 2 ( r ) , for r ∈ Rel 1 ( r )) ⊆ I (iv) h ( I 1 ( n )) = I 2 ( n ) , for n ∈ Nname (v) h ( g 1 ( x )) = g 2 ( x ) , for x ∈ Nvar, if g 1 ( x ) is defined Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 65 20

  47. Subsumption and unification Subsumption F 1 = � V 1 , I 1 , g 1 � subsumes F 2 = � V 2 , I 2 , g 2 � ( F 1 ⊑ F 2 ) iff there is a (necessarily unique) morphism h : F 1 → F 2 , i.e., a function h : V 1 → V 2 such that (i) I 1 ( f )( v )) , if I 1 ( f )( v ) is defined, f ∈ Atr, v ∈ V 1 , 2 ( f )( h ( v )) = h ( I (ii) h ( I 1 ( t )) ⊆ I 2 ( t ) , for t ∈ Type (iii) h ( I 2 ( r ) , for r ∈ Rel 1 ( r )) ⊆ I (iv) h ( I 1 ( n )) = I 2 ( n ) , for n ∈ Nname (v) h ( g 1 ( x )) = g 2 ( x ) , for x ∈ Nvar, if g 1 ( x ) is defined Example actor man man activity x actor locomotion locomotion e e mover mover ⊑ manner manner path walking path Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 66 20

  48. Subsumption and unification Subsumption F 1 = � V 1 , I 1 , g 1 � subsumes F 2 = � V 2 , I 2 , g 2 � ( F 1 ⊑ F 2 ) iff there is a (necessarily unique) morphism h : F 1 → F 2 , i.e., a function h : V 1 → V 2 such that (i) I 1 ( f )( v )) , if I 1 ( f )( v ) is defined, f ∈ Atr, v ∈ V 1 , 2 ( f )( h ( v )) = h ( I (ii) h ( I 1 ( t )) ⊆ I 2 ( t ) , for t ∈ Type (iii) h ( I 2 ( r ) , for r ∈ Rel 1 ( r )) ⊆ I (iv) h ( I 1 ( n )) = I 2 ( n ) , for n ∈ Nname (v) h ( g 1 ( x )) = g 2 ( x ) , for x ∈ Nvar, if g 1 ( x ) is defined Example actor man man activity x actor locomotion locomotion e e mover mover ⊑ manner manner path walking path Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 67 20

  49. Subsumption and unification Subsumption F 1 = � V 1 , I 1 , g 1 � subsumes F 2 = � V 2 , I 2 , g 2 � ( F 1 ⊑ F 2 ) iff there is a (necessarily unique) morphism h : F 1 → F 2 , i.e., a function h : V 1 → V 2 such that (i) I 1 ( f )( v )) , if I 1 ( f )( v ) is defined, f ∈ Atr, v ∈ V 1 , 2 ( f )( h ( v )) = h ( I (ii) h ( I 1 ( t )) ⊆ I 2 ( t ) , for t ∈ Type (iii) h ( I 2 ( r ) , for r ∈ Rel 1 ( r )) ⊆ I (iv) h ( I 1 ( n )) = I 2 ( n ) , for n ∈ Nname (v) h ( g 1 ( x )) = g 2 ( x ) , for x ∈ Nvar, if g 1 ( x ) is defined Intuition F 1 subsumes F 2 ( F 1 ⊑ F 2 ) iff F 2 is at least as informative as F 1 . Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 68 20

  50. Subsumption and unification Subsumption F 1 = � V 1 , I 1 , g 1 � subsumes F 2 = � V 2 , I 2 , g 2 � ( F 1 ⊑ F 2 ) iff there is a (necessarily unique) morphism h : F 1 → F 2 , i.e., a function h : V 1 → V 2 such that (i) I 1 ( f )( v )) , if I 1 ( f )( v ) is defined, f ∈ Atr, v ∈ V 1 , 2 ( f )( h ( v )) = h ( I (ii) h ( I 1 ( t )) ⊆ I 2 ( t ) , for t ∈ Type (iii) h ( I 2 ( r ) , for r ∈ Rel 1 ( r )) ⊆ I (iv) h ( I 1 ( n )) = I 2 ( n ) , for n ∈ Nname (v) h ( g 1 ( x )) = g 2 ( x ) , for x ∈ Nvar, if g 1 ( x ) is defined Unification Least upper bound F 1 ⊔ F 2 of F 1 and F 2 w.r.t. subsumption. Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 69 20

  51. Subsumption and unification Subsumption F 1 = � V 1 , I 1 , g 1 � subsumes F 2 = � V 2 , I 2 , g 2 � ( F 1 ⊑ F 2 ) iff there is a (necessarily unique) morphism h : F 1 → F 2 , i.e., a function h : V 1 → V 2 such that (i) I 1 ( f )( v )) , if I 1 ( f )( v ) is defined, f ∈ Atr, v ∈ V 1 , 2 ( f )( h ( v )) = h ( I (ii) h ( I 1 ( t )) ⊆ I 2 ( t ) , for t ∈ Type (iii) h ( I 2 ( r ) , for r ∈ Rel 1 ( r )) ⊆ I (iv) h ( I 1 ( n )) = I 2 ( n ) , for n ∈ Nname (v) h ( g 1 ( x )) = g 2 ( x ) , for x ∈ Nvar, if g 1 ( x ) is defined Unification Least upper bound F 1 ⊔ F 2 of F 1 and F 2 w.r.t. subsumption. Theorem (Frame unification) [ ≈ Hegner 1994] The worst case time-complexity of frame unification is almost linear in the number of nodes. Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 70 20

  52. Frames as minimal models Frames as minimal models of atribute-value formulas (i) Every frame is the minimal model (w.r.t. subsumption) of a finite conjunction of primitive atribute-value formulas. Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 71 21

  53. Frames as minimal models Frames as minimal models of atribute-value formulas (i) Every frame is the minimal model (w.r.t. subsumption) of a finite conjunction of primitive atribute-value formulas. (ii) Every finite conjunction of primitive atribute-value formulas has a minimal frame model. Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 72 21

  54. Frames as minimal models Frames as minimal models of atribute-value formulas (i) Every frame is the minimal model (w.r.t. subsumption) of a finite conjunction of primitive atribute-value formulas. (ii) Every finite conjunction of primitive atribute-value formulas has a minimal frame model. Example actor x man house locomotion e z mover manner in-region path part-of endp walking path region region Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 73 21

  55. Frames as minimal models Frames as minimal models of atribute-value formulas (i) Every frame is the minimal model (w.r.t. subsumption) of a finite conjunction of primitive atribute-value formulas. (ii) Every finite conjunction of primitive atribute-value formulas has a minimal frame model. Example actor x man house locomotion e z mover manner in-region path part-of endp walking path region region e · ( locomotion ∧ manner : walking ∧ actor � x ∧ mover � actor ∧ path : ( path ∧ endp : region )) ∧ � e · path endp , z · in-region � : part-of ∧ x · man Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 74 21

  56. Atribute-value constraints Constraints (general format) ∀ ϕ , ϕ ∈ AVDesc Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 75 22

  57. Atribute-value constraints Constraints (general format) ∀ ϕ , ϕ ∈ AVDesc � V , I , g � � ∀ ϕ iff � V , I , g � , v � ϕ for every v ∈ V Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 76 22

  58. Atribute-value constraints Constraints (general format) ∀ ϕ , ϕ ∈ AVDesc � V , I , g � � ∀ ϕ iff � V , I , g � , v � ϕ for every v ∈ V Notation: ϕ ⇛ ψ for ∀ ( ϕ → ψ ) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 77 22

  59. Atribute-value constraints Constraints (general format) ∀ ϕ , ϕ ∈ AVDesc � V , I , g � � ∀ ϕ iff � V , I , g � , v � ϕ for every v ∈ V Notation: ϕ ⇛ ψ for ∀ ( ϕ → ψ ) Horn constraints: ϕ 1 ∧ . . . ∧ ϕ n ⇛ ψ ( ϕ i ∈ pAVDesc ∪ {⊤} , ψ ∈ pAVDesc ∪ {⊥} ) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 78 22

  60. Atribute-value constraints Constraints (general format) ∀ ϕ , ϕ ∈ AVDesc � V , I , g � � ∀ ϕ iff � V , I , g � , v � ϕ for every v ∈ V Notation: ϕ ⇛ ψ for ∀ ( ϕ → ψ ) Horn constraints: ϕ 1 ∧ . . . ∧ ϕ n ⇛ ψ ( ϕ i ∈ pAVDesc ∪ {⊤} , ψ ∈ pAVDesc ∪ {⊥} ) Examples activity ⇛ event causation ∧ activity ⇛ ⊥ agent : ⊤ ⇛ agent � actor activity ⇛ actor : ⊤ activity ∧ motion ⇛ actor � mover Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 79 22

  61. Atribute-value constraints Constraints (general format) ∀ ϕ , ϕ ∈ AVDesc � V , I , g � � ∀ ϕ iff � V , I , g � , v � ϕ for every v ∈ V Notation: ϕ ⇛ ψ for ∀ ( ϕ → ψ ) Horn constraints: ϕ 1 ∧ . . . ∧ ϕ n ⇛ ψ ( ϕ i ∈ pAVDesc ∪ {⊤} , ψ ∈ pAVDesc ∪ {⊥} ) Examples activity ⇛ event (every activity is an event) causation ∧ activity ⇛ ⊥ agent : ⊤ ⇛ agent � actor activity ⇛ actor : ⊤ activity ∧ motion ⇛ actor � mover Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 80 22

  62. Atribute-value constraints Constraints (general format) ∀ ϕ , ϕ ∈ AVDesc � V , I , g � � ∀ ϕ iff � V , I , g � , v � ϕ for every v ∈ V Notation: ϕ ⇛ ψ for ∀ ( ϕ → ψ ) Horn constraints: ϕ 1 ∧ . . . ∧ ϕ n ⇛ ψ ( ϕ i ∈ pAVDesc ∪ {⊤} , ψ ∈ pAVDesc ∪ {⊥} ) Examples activity ⇛ event (every activity is an event) causation ∧ activity ⇛ ⊥ (there is nothing which is both a causation and an activity) agent : ⊤ ⇛ agent � actor activity ⇛ actor : ⊤ activity ∧ motion ⇛ actor � mover Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 81 22

  63. Atribute-value constraints Constraints (general format) ∀ ϕ , ϕ ∈ AVDesc � V , I , g � � ∀ ϕ iff � V , I , g � , v � ϕ for every v ∈ V Notation: ϕ ⇛ ψ for ∀ ( ϕ → ψ ) Horn constraints: ϕ 1 ∧ . . . ∧ ϕ n ⇛ ψ ( ϕ i ∈ pAVDesc ∪ {⊤} , ψ ∈ pAVDesc ∪ {⊥} ) Examples activity ⇛ event (every activity is an event) causation ∧ activity ⇛ ⊥ (there is nothing which is both a causation and an activity) agent : ⊤ ⇛ agent � actor (every agent is also an actor) activity ⇛ actor : ⊤ activity ∧ motion ⇛ actor � mover Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 82 22

  64. Atribute-value constraints Constraints (general format) ∀ ϕ , ϕ ∈ AVDesc � V , I , g � � ∀ ϕ iff � V , I , g � , v � ϕ for every v ∈ V Notation: ϕ ⇛ ψ for ∀ ( ϕ → ψ ) Horn constraints: ϕ 1 ∧ . . . ∧ ϕ n ⇛ ψ ( ϕ i ∈ pAVDesc ∪ {⊤} , ψ ∈ pAVDesc ∪ {⊥} ) Examples activity ⇛ event (every activity is an event) causation ∧ activity ⇛ ⊥ (there is nothing which is both a causation and an activity) agent : ⊤ ⇛ agent � actor (every agent is also an actor) activity ⇛ actor : ⊤ (every activity has an actor) ... activity ∧ motion ⇛ actor � mover Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 83 22

  65. Atribute-value constraints Graphical presentation of constraints event activity motion causation actor ∶ ⊺ mover ∶ ⊺ cause ∶ ⊺ ∧ effect ∶ ⊺ activity ∧ motion translocation onset-causation extended- actor ≐ mover path ∶ ⊺ cause ∶ punctual-event causation bounded-translocation locomotion goal ∶ ⊺ bounded-locomotion Caveat : Reading convention required ! Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 84 23

  66. Atribute-value constraints Further examples [Babonnaud et al. 2016] book ⇛ info-carrier Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 85 24

  67. Atribute-value constraints Further examples [Babonnaud et al. 2016] book � book , info-carrier book ⇛ info-carrier Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 86 24

  68. Atribute-value constraints Further examples [Babonnaud et al. 2016] book � book , info-carrier book ⇛ info-carrier info-carrier ⇛ phys-obj ∧ content : information Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 87 24

  69. Atribute-value constraints Further examples [Babonnaud et al. 2016] book � book , info-carrier book ⇛ info-carrier info-carrier ⇛ phys-obj ∧ content : information info-carrier � info-carrier , phys-obj information content Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 88 24

  70. Atribute-value constraints Further examples [Babonnaud et al. 2016] book � book , info-carrier book ⇛ info-carrier info-carrier ⇛ phys-obj ∧ content : information info-carrier � info-carrier , phys-obj information content reading ⇛ perc-comp : perception ∧ ment-comp : comprehension ∧ [ perc-comp , ment-comp ] : ordered-overlap Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 89 24

  71. Atribute-value constraints Further examples [Babonnaud et al. 2016] book � book , info-carrier book ⇛ info-carrier info-carrier ⇛ phys-obj ∧ content : information info-carrier � info-carrier , phys-obj information content reading ⇛ perc-comp : perception ∧ ment-comp : comprehension ∧ [ perc-comp , ment-comp ] : ordered-overlap perception perc-comp ordered- overlap reading reading � ment-comp comprehension Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 90 24

  72. Unification under constraints Theorem (Frame unification under Horn constraints) [ ≈ Hegner 1994] The worst case time-complexity of frame unification under a finite set of labeled Horn constraints is almost linear in the number of nodes. Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 91 25

  73. Unification under constraints Theorem (Frame unification under Horn constraints) [ ≈ Hegner 1994] The worst case time-complexity of frame unification under a finite set of labeled Horn constraints is almost linear in the number of nodes. (Labeled Horn constraint: k 1 · ϕ 1 ∧ . . . ∧ k n · ϕ n → l · ψ ) Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 92 25

  74. Unification under constraints Theorem (Frame unification under Horn constraints) [ ≈ Hegner 1994] The worst case time-complexity of frame unification under a finite set of labeled Horn constraints is almost linear in the number of nodes. (Labeled Horn constraint: k 1 · ϕ 1 ∧ . . . ∧ k n · ϕ n → l · ψ ) Example       eating     person     actor x e   ⊔ u      name ‘Adam’      theme y  

  75. Unification under constraints Theorem (Frame unification under Horn constraints) [ ≈ Hegner 1994] The worst case time-complexity of frame unification under a finite set of labeled Horn constraints is almost linear in the number of nodes. (Labeled Horn constraint: k 1 · ϕ 1 ∧ . . . ∧ k n · ϕ n → l · ψ ) Example       eating     person     actor x e   ⊔ u   ⊔ x � u    name ‘Adam’      theme y  

  76. Unification under constraints Theorem (Frame unification under Horn constraints) [ ≈ Hegner 1994] The worst case time-complexity of frame unification under a finite set of labeled Horn constraints is almost linear in the number of nodes. (Labeled Horn constraint: k 1 · ϕ 1 ∧ . . . ∧ k n · ϕ n → l · ψ ) Example    eating            eating           person person     actor x     actor x e   ⊔ u   ⊔ x � u = e    u     name ‘Adam’   name ‘Adam’          theme y       theme y   Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 95 25

  77. Unification under constraints Theorem (Frame unification under Horn constraints) [ ≈ Hegner 1994] The worst case time-complexity of frame unification under a finite set of labeled Horn constraints is almost linear in the number of nodes. (Labeled Horn constraint: k 1 · ϕ 1 ∧ . . . ∧ k n · ϕ n → l · ψ ) Example    eating            eating           person person     actor x     actor x e   ⊔ u   ⊔ x � u = e    u     name ‘Adam’   name ‘Adam’          theme y       theme y   A general view on semantic processing Semantic processing as the incremental construction of minimal ( frame ) models (by unification under constraints) based on the input, the context, and background knowledge (lexicon, ...). Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 96 25

  78. Outline of today’s course Introduction to frame semantics 1 Frames in the sense of Fillmore and Barsalou Frames according to this course Formalization of frames 2 Atribute-value descriptions and formulas Formal definition of frames Frames as models Subsumption and unification Atribute-value constraints Further topics 3 Frames versus feature structures Type constraints versus type hierarchy Frame semantics: extensions 4 Summary and outlook 5 Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 97 26

  79. Frames versus feature structures Feature structures have a designated root node from which each other node is reachable via an atribute path, and they have no relations. Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 98 27

  80. Frames versus feature structures Feature structures have a designated root node from which each other node is reachable via an atribute path, and they have no relations. � | Nvar | = 1, Rel = ∅ . Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 99 27

  81. Frames versus feature structures Feature structures have a designated root node from which each other node is reachable via an atribute path, and they have no relations. � | Nvar | = 1, Rel = ∅ . Typed feature structures Kallmeyer, Lichte, Osswald & Petitjean (HHU Düsseldorf) 100 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend