gps as a dark matter detector
play

GPS as a dark matter detector Andrei Derevianko University of - PowerPoint PPT Presentation

GPS as a dark matter detector Andrei Derevianko University of Nevada, Reno, USA GPS.DM (?) collaboration G. Blewitt (GPS, Nevada-Reno) A. Derevianko (Theory/Clocks/Data analysis, Nevada-Reno) M. Pospelov (Theory, Perimeter/UBC) J. Sherman


  1. GPS as a dark matter detector Andrei Derevianko University of Nevada, Reno, USA

  2. GPS.DM (?) collaboration G. Blewitt (GPS, Nevada-Reno) A. Derevianko (Theory/Clocks/Data analysis, Nevada-Reno) M. Pospelov (Theory, Perimeter/UBC) J. Sherman (Clocks, NIST -Boulder) Students (all Nevada-Reno) S. Alto, M. Murphy*, N. Lundholm, A. Rowling * = graduated + GNOME connections Postdoctoral position available supported by the US NSF

  3. Outline • What do we know about DM? • “Lumpy” dark matter • Atomic clocks • GPS as a dark matter detector Andrei Derevianko - U. Nevada-Reno

  4. What do we know about DM? Dark Matter halo Velocity distribution v 2 f H v L 0 300 650 v, km ê s Galactic orbital motion Energy density v g ~ 300km/s ρ DM ∼ 0.3 GeV/cm 3 Andrei Derevianko - U. Nevada-Reno

  5. Candidates: from WIMPs to MACHOs ? M > 10 − 24 M ⊙ M ~10 − 56 − 10 − 54 M ⊙ M ~10 − 7 − 10 2 M ⊙ WIMPs MACHOs Weakly interacting massive particles Quantum fields Massive compact halo objects

  6. DM as a gas of stable extended objects • Self-interacting quantum fields • Networks of topological defects (light quantum fields = monopoles, vortices, domain walls), solitons, Q-balls • Non-gravitational (dissipative) interactions in the dark sector Illustration: ferromagnets Curie point in ferromagnetic phase transitions Andrei Derevianko - U. Nevada-Reno

  7. DM halo=“preferred” reference frame α ' ' 12 11 1 α 10 2 9 3 ' 8 4 7 5 α 300 km/s 6 ' ' Macroscopic DM objects Are there correlations with galactic velocity of moving through DM halo? Andrei Derevianko - U. Nevada-Reno

  8. Are the clouds “natural”? Andrei Derevianko - U. Nevada-Reno

  9. “Gas of topological defects” DM model φ a 2 A 2 d 12 11 1 10 2 9 3 8 4 7 5 6 L ! Defect size and d ~ particle mass m φ c ⎛ ⎞ A 2 ρ TDM ∼ 1 1 L 3 × d 2 d 3 ⎜ ⎟ Energy density ⎝ ⎠ ! c 1 1 n σ v ∼ T coll ~ 1/ L 3 × d 2 × v g Time b/w “collisions” M. Pospelov τ ~ d Interaction time v g

  10. Atomic clocks - amazing listening devices • Most precise instruments ever built • Modern nuclear/atomic clocks aim at 19 significant figures of accuracy • Fraction of a second over the age of the Universe • Best limits on modern-epoch drift of fundamental constants Andrei Derevianko - U. Nevada-Reno

  11. Clocks quantum oscillator: φ 0 ( t ) / ω 0 t ∫ φ 0 ( t ) = ω 0 d ′ phase = time = t 0 t ∫ φ ( t ) = ( ω 0 + δω ( ′ d ′ with TDM clock speeds up/slows down t )) t 0 ( ) ( ) = Δ φ TDM t ( ) = Δ t TDM t t ∫ Δ φ TDM t δ ω ( ′ t ) d ′ t ω 0 −∞ Andrei Derevianko - U. Nevada-Reno

  12. Basic idea Lump of dark matter ~300 km/s atomic frequencies are shifted 12 v g 11 1 10 2 by the lump 9 3 8 4 7 5 6 “New physics” interaction time reading - linear bias ! absolute time d / v g Andrei Derevianko - U. Nevada-Reno

  13. Dark matter signature 12 12 v g 11 1 11 1 10 2 10 2 9 3 9 3 8 4 8 4 7 5 7 5 6 6 difference in clock readings l / v g time Monitor time difference b/w two spatially-separated clocks 
 ⇒ persistent clock discrepancy for over time l/v g GPS aperture =50,000 km => l/v g ~ 150 sec Details in Derevianko and Pospelov, Nature Phys. 10, 933 (2014) Andrei Derevianko - U. Nevada-Reno

  14. Tomography of a monopole 2 12 11 1 10 2 9 3 8 4 v g 7 5 6 12 11 1 10 2 9 3 8 4 7 5 6 1 3 12 11 1 10 2 9 3 8 4 7 5 6 clock phase 1 2 3 time Andrei Derevianko - U. Nevada-Reno

  15. Dark-matter portal ⎛ ⎞ 2 + m p pp 2 + ... ) m e ee 1 ( − L int = a 2 r , t + 2 F ⎜ ⎟ µ ν Λ e Λ p 4 Λ γ 2 ⎝ ⎠ DM field electrons protons EM field Compare to the QED Lagrangian ( ) m e c 2 → m e c 2 1 + a 2 r , t ⎛ ⎞ 1 L QED = i ! ceDe − m e c 2 ee − 2 ⎜ ⎟ F Λ e ⎝ ⎠ 2 µ ν 4 µ 0 TD lump pulls on the rest masses of electrons, quarks and EM coupling Energies and frequencies are modulated as TD sweeps through Andrei Derevianko - U. Nevada-Reno

  16. Variation of fundamental constants ⎛ ⎞ ω clock α , m q , m e δω ( t ) δ X ( t ) δα ( t ) ∑ ⎜ ⎟ = = K α + ... K X Λ QCD ⎝ ⎠ m p ω 0 α X X = fndconsts Compare ratio of frequencies of two clocks with different sensitivities T. Rosenband, et al. Science 319, 1808 (2008)

  17. Variation of fundamental constants Drift vs transients 12 v g 11 1 10 2 Transient 9 3 8 4 7 5 6 d ~100km 12 v g 11 1 10 2 Slow drift (e.g., NIST Al/Hg ion clocks) 9 3 8 4 7 5 6 d > 300km/s × 1year = 10 10 km Andrei Derevianko - U. Nevada-Reno

  18. Networks of clocks Global Positioning System ❖ Each GPS satellite has four clocks (32 satellites) ❖ Data are sampled every second ❖ Vast terrestrial network of monitoring stations (H masers) Trans-european clock network ❖ Optical fiber connects state-of-the art clocks ❖ Elements were demonstrated 
 (PTB-MPI Munich 920 km link) (Predehl et al., Science (2012)) TAI dissemination network between national labs Andrei Derevianko - U. Nevada-Reno

  19. Signal-to-noise ratio (thin wall) 12 11 1 12 10 2 v g 11 1 time difference 10 2 9 3 9 3 8 4 7 5 8 4 6 7 5 6 ! absolute time T m Time b/w events c ! K X ρ DM d 2 T coll ∑ S / N = Λ X T m σ y ( T m ) 2 T m v g / l 2 fundametal constantsX defect size Allan variance Dark matter 
 energy density Andrei Derevianko - U. Nevada-Reno

  20. Projected limits (thin domain walls) 
 (if the TDM signature is not observed) Trans-continental network of Sr optical lattice clocks 10 11 , TeV 10 8 n o i t a l l e t s n o c Energy scale Plank energy scale 10^16 TeV S P G 10 5 100 Excluded by terrrestial experiments and astrophysical bounds 10 4 10 5 1 10 100 1000 m = 10 10 eV m = 10 14 eV defect size d, km Total monitoring time =1 year Andrei Derevianko - U. Nevada-Reno

  21. GPS as a dark matter detector • GPS = max 32 satellites with Rb/Cs clocks • 50,000 km aperture - largest human-built DM detector - no extra $$$ • None of conventional effects would sweep at 300 km/s (except for solar flares) • Other navigation systems: Glonass/Galileo/BeiDou • Extensive terrestrial clock network on receiving stations Andrei Derevianko - U. Nevada-Reno

  22. GPS clocks • Presently a mix of II-generation block sats (IIA,IIR,IIRM,IIF) • 12 hr orbits • Each satellite has 4 clocks (depends on individual satellite) • Only a single clock is operational at a time on a single satellite 
 (misbehaving clocks are swapped, swaps are documented) • Rb and Cs clocks (20+ Rb, 5 Cs) • The broadcast microwave signals are tied to the clock output Andrei Derevianko - U. Nevada-Reno

  23. Data acquisition Downlink microwave signals: L1 = 1572.42 MHz L2 = 1227.6 MHz L5 = 1176.45 MHz λ ~20 cm Measure the carrier phase of the broadcast signal (much more precise than the navigational message) Collect data from many receivers around the world Phases are combined => clock,orbit, position solutions Errors: time ~ 0.1ns and positions ~ 1 mm

  24. Representative GNSS ground stations (with 10 years of 1-sec carrier phase data) Quartz oscillators (black) Atomic clocks: Hydrogen Rubidium Cesium Andrei Derevianko - U. Nevada-Reno

  25. Signature 12 12 v g 11 1 11 1 10 2 10 2 9 3 9 3 8 4 8 4 7 5 7 5 6 6 difference in clock readings l / v g time Monitor time difference b/w two spatially-separated clocks 
 ⇒ persistent clock discrepancy for over time l/v g GPS aperture =50,000 km => l/v g ~ 150 sec Andrei Derevianko - U. Nevada-Reno

  26. GPS data (Oct 16, 2007, 7AM EST) Clock difference G02-G08 in seconds - 1.5 ¥ 10 - 9 ! ## - 2. ¥ 10 - 9 Work in progress - 2.5 ¥ 10 - 9 ≈ 40 σ " Reject b/c of x-correlation ## - 3. ¥ 10 - 9 $ - 3.5 ¥ 10 - 9 ! 830 835 840 845 850 855 GPS epoch (30s) 150seconds 40 σ signal - but this occurs for all pairs with G02 satellite - => technical glitch with the clock on the G02 satellite ? Andrei Derevianko - U. Nevada-Reno

  27. Data analysis At the end of the day I would like to be able to say: a certain signature fits the data with such-and-such probability. Also we need to estimate parameters for a given signature Andrei Derevianko - U. Nevada-Reno

  28. Bayesian data analysis ( ) P ( M i | D , I ) = P ( M i | I ) × P D | M i , I ( ) P D , I M 0 = “No DM signal” ⎧ ⎪ M 1 = “Thin domain wall” ⎪ Hypoteses: ⎨ M 2 = “Monopole” ⎪ … ⎪ ⎩ M X =“….” ( ) O i ,0 = P D | M i , I Relative odds (assuming equal priors): ( ) P D | M 0 , I Complex multi-parameter models are “punished” automatically: built-in Occam’s razor Andrei Derevianko - U. Nevada-Reno

  29. ( ) O i ,0 = P D | M i , I ( ) P D | M 0 , I How to assign likelihoods? Andrei Derevianko - U. Nevada-Reno

  30. Clocks are noisy and non-stationary Deterministic: Time offset Frequency offset Frequency drift Stochastic: White noise PM Flicker noise PM White noise FM Flicker noise FM Random walk FM Andrei Derevianko - U. Nevada-Reno

  31. Allan variances as noise characteristics E. R. Griggs, E.R. Kursinski, D.M. Alkos (Radio Science, in press) ( ) = τ ( ) σ x τ Mod σ y τ Time projection error 3 ( ) ~ 3.5 × 10 − 3 (Cs-IIF) − 5.2 × 10 − 2 (Rb-IIRM) ns σ x 30s Andrei Derevianko - U. Nevada-Reno

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend