golomb rulers
play

Golomb Rulers Matthias Beck San Francisco State University - PowerPoint PPT Presentation

Golomb Rulers Matthias Beck San Francisco State University Tristram Bogart Universidad de los Andes Tu Pham UC Riverside arXiv:1110.6154 All Sorts of Golomb Rulers 0 3 5 0 1 3 0 2 3 8 0 1 4 6 Golomb ruler: sequence of distinct


  1. Golomb Rulers Matthias Beck San Francisco State University Tristram Bogart Universidad de los Andes Tu Pham UC Riverside arXiv:1110.6154

  2. All Sorts of Golomb Rulers 0 3 5 0 1 3 0 2 3 8 0 1 4 6 Golomb ruler: sequence of distinct integers with distinct pairwise differences Every Golomb ruler comes with a length t and some m + 1 markings Optimal Golomb rulers have minimal length for a given number of markings Perfect Golomb rulers can measure every integer from 0 to t Golomb Rulers Matthias Beck 2

  3. All Sorts of Golomb Rulers 0 3 5 0 1 3 0 2 3 8 0 1 4 6 Every Golomb ruler comes with a length t and m + 1 markings Optimal Golomb rulers have minimal length for a given number of markings Perfect Golomb rulers can measure every integer from 0 to t Fun Exercise: There are no perfect Golomb rulers of lenth t > 6 Golomb Rulers Matthias Beck 2

  4. All Sorts of Golomb Rulers 0 3 5 0 1 3 0 2 3 8 0 1 4 6 Every Golomb ruler comes with a length t and m + 1 markings Research problem: find optimal Golomb rulers with > 26 markings (see http://www.distributed.net/OGR for computational results). Our goal: count all Golomb rulers for given t and m Golomb Rulers Matthias Beck 2

  5. Motivations & Applications Distortion problems in consecutive radio bands − → place radio signals ◮ so that all distances are distinct (Babcock 1950’s) Error-correcting codes ◮ Additive number theory (Sidon sets) ◮ Dissonant music pieces (see Scott Rickard’s TED talk) ◮ Golomb Rulers Matthias Beck 3

  6. Enumeration of Golomb Rulers Goal Study/compute the number g m ( t ) of Golomb rulers of length t with m + 1 markings 0 x t Example g 2 ( t ) = # { x ∈ Z : 0 < x < t, x � = t − x } Golomb Rulers Matthias Beck 4

  7. Enumeration of Golomb Rulers Goal Study/compute the number g m ( t ) of Golomb rulers of length t with m + 1 markings 0 x t Example g 2 ( t ) = # { x ∈ Z : 0 < x < t, t � = 2 x } Golomb Rulers Matthias Beck 4

  8. Enumeration of Golomb Rulers Goal Study/compute the number g m ( t ) of Golomb rulers of length t with m + 1 markings 0 x t Example 1 g 2 ( t ) = # { x ∈ Z : 0 < x < t, t � = 2 x } � t − 1 if t is odd = t − 2 if t is even . . . a quasipolynomial in t 2 t 2 − 4 t + 10  1 if t ≡ 0 ,   2 t 2 − 3 t + 5  1 if t ≡ 1 , 5 , 7 , 11 ,  Example 2  2   2 t 2 − 4 t + 6 1 g 3 ( t ) = (mod 12) if t ≡ 2 , 10 , 2 t 2 − 3 t + 9 1  if t ≡ 3 , 9 ,   2   2 t 2 − 4 t + 8 1  if t ≡ 4 , 6 , 8  Golomb Rulers Matthias Beck 4

  9. Enumeration of Golomb Rulers Goal Study/compute the number g m ( t ) of Golomb rulers of length t with m + 1 markings 0 x t Example 1 g 2 ( t ) = # { x ∈ Z : 0 < x < t, t � = 2 x } � t − 1 if t is odd = t − 2 if t is even . . . a quasipolynomial in t Theorem 1 The Golomb counting function g m ( t ) is a quasipolynomial in t 1 of degree m − 1 with leading coefficient ( m − 1)! Golomb Rulers Matthias Beck 4

  10. Let’s start counting. . . 0 x 1 x 2 t � � x ∈ Z 4 : 0 = x 0 < x 1 < x 2 < x 3 = t g 3 ( t ) := # all x j − x k distinct Golomb Rulers Matthias Beck 5

  11. Let’s start counting. . . z 1 z 2 z 3 0 x 1 x 2 t � � x ∈ Z 4 : 0 = x 0 < x 1 < x 2 < x 3 = t g 3 ( t ) := # all x j − x k distinct � � z 1 + z 2 + z 3 = t z ∈ Z 3 = # > 0 : � j ∈ U z j � = � j ∈ V z j for all dpcs U, V ⊂ [3] Golomb Rulers Matthias Beck 5

  12. Let’s start counting. . . z 1 z 2 z 3 0 x 1 x 2 t � � x ∈ Z 4 : 0 = x 0 < x 1 < x 2 < x 3 = t g 3 ( t ) := # all x j − x k distinct � � z 1 + z 2 + z 3 = t z ∈ Z 3 = # > 0 : � j ∈ U z j � = � j ∈ V z j for all dpcs U, V ⊂ [3] where dpcs is shorthand for “disjoint proper consecutive subset,” and [ m ] := { 1 , 2 , . . . , m } . x 1 � = x 2 ⇐ ⇒ z 2 > 0 x 2 � = t − x 1 ⇐ ⇒ z 1 � = z 3 x 2 � = t − x 2 ⇐ ⇒ z 1 + z 2 � = z 3 Golomb Rulers Matthias Beck 5

  13. Let’s start counting. . . z 1 z 2 z 3 0 x 1 x 2 t � � x ∈ Z 4 : 0 = x 0 < x 1 < x 2 < x 3 = t g 3 ( t ) := # all x j − x k distinct � � z 1 + z 2 + z 3 = t z ∈ Z 3 = # > 0 : � j ∈ U z j � = � j ∈ V z j for all dpcs U, V ⊂ [3] where dpcs is shorthand for “disjoint proper consecutive subset,” and [ m ] := { 1 , 2 , . . . , m } . More generally, � � x ∈ Z m +1 : 0 = x 0 < x 1 < · · · < x m − 1 < x m = t g m ( t ) := # all x j − x k distinct � � z 1 + z 2 + · · · + z m = t z ∈ Z m = # > 0 : � j ∈ U z j � = � j ∈ V z j for all dpcs U, V ⊂ [ m ] Golomb Rulers Matthias Beck 5

  14. Enter Geometry Lattice polytope P ⊂ R d – convex hull of finitely points in Z d t P ∩ Z d � � For t ∈ Z > 0 let L P ( t ) := # Golomb Rulers Matthias Beck 6

  15. Enter Geometry Lattice polytope P ⊂ R d – convex hull of finitely points in Z d t P ∩ Z d � � For t ∈ Z > 0 let L P ( t ) := # Example: ∆ = conv { (0 , 0) , (1 , 0) , (0 , 1) } ( x, y ) ∈ R 2 : x, y ≥ 0 , x + y ≤ 1 � � = L ∆ ( t ) = . . . Golomb Rulers Matthias Beck 6

  16. Enter Geometry Lattice polytope P ⊂ R d – convex hull of finitely points in Z d t P ∩ Z d � � For t ∈ Z > 0 let L P ( t ) := # Example: ∆ = conv { (0 , 0) , (1 , 0) , (0 , 1) } ( x, y ) ∈ R 2 : x, y ≥ 0 , x + y ≤ 1 � � = � t +2 = 1 � L ∆ ( t ) = 2 ( t + 1)( t + 2) 2 Golomb Rulers Matthias Beck 6

  17. Enter Geometry Lattice polytope P ⊂ R d – convex hull of finitely points in Z d t P ∩ Z d � � For t ∈ Z > 0 let L P ( t ) := # Example: ∆ = conv { (0 , 0) , (1 , 0) , (0 , 1) } ( x, y ) ∈ R 2 : x, y ≥ 0 , x + y ≤ 1 � � = � t +2 = 1 � L ∆ ( t ) = 2 ( t + 1)( t + 2) 2 � t − 1 � L ∆ ( − t ) = 2 Golomb Rulers Matthias Beck 6

  18. Enter Geometry Lattice polytope P ⊂ R d – convex hull of finitely points in Z d t P ∩ Z d � � For t ∈ Z > 0 let L P ( t ) := # Example: ∆ = conv { (0 , 0) , (1 , 0) , (0 , 1) } ( x, y ) ∈ R 2 : x, y ≥ 0 , x + y ≤ 1 � � = � t +2 = 1 � L ∆ ( t ) = 2 ( t + 1)( t + 2) 2 � t − 1 � L ∆ ( − t ) = = L ∆ ◦ ( t ) 2 For example, the evaluations L ∆ ( − 1) = L ∆ ( − 2) = 0 point to the fact that neither ∆ nor 2∆ contain any interior lattice points. Golomb Rulers Matthias Beck 6

  19. Enter Geometry Lattice polytope P ⊂ R d – convex hull of finitely points in Z d � t P ∩ Z d � For t ∈ Z > 0 let L P ( t ) := # Example: ∆ = conv { (0 , 0) , (1 , 0) , (0 , 1) } ( x, y ) ∈ R 2 : x, y ≥ 0 , x + y ≤ 1 � � = � t +2 = 1 � L ∆ ( t ) = 2 ( t + 1)( t + 2) 2 � t − 1 � L ∆ ( − t ) = = L ∆ ◦ ( t ) 2 Theorem (Ehrhart 1962) L P ( t ) is a polynomial in t . Theorem (Macdonald 1971) ( − 1) dim P L P ( − t ) = L P ◦ ( t ) Golomb Rulers Matthias Beck 6

  20. Enter Geometry Rational polytope P ⊂ R d – convex hull of finitely points in Q d � t P ∩ Z d � For t ∈ Z > 0 let L P ( t ) := # Example: ∆ = conv { (0 , 0) , (1 , 0) , (0 , 1) } ( x, y ) ∈ R 2 : x, y ≥ 0 , x + y ≤ 1 � � = � t +2 = 1 � L ∆ ( t ) = 2 ( t + 1)( t + 2) 2 � t − 1 � L ∆ ( − t ) = = L ∆ ◦ ( t ) 2 Theorem (Ehrhart 1962) L P ( t ) is a quasipolynomial in t . Theorem (Macdonald 1971) ( − 1) dim P L P ( − t ) = L P ◦ ( t ) Golomb Rulers Matthias Beck 6

  21. Enter Geometry Rational polytope P ⊂ R d – convex hull of finitely points in Q d t P ∩ Z d � � For t ∈ Z > 0 let L P ( t ) := # Example: ∆ = conv { (0 , 0) , (1 , 0) , (0 , 1) } ( x, y ) ∈ R 2 : x, y ≥ 0 , x + y ≤ 1 � � = � t +2 = 1 � L ∆ ( t ) = 2 ( t + 1)( t + 2) 2 � t − 1 � L ∆ ( − t ) = = L ∆ ◦ ( t ) 2 For 2 -dimensional lattice polygons, Ehrhart–Macdonald’s theorem follows from Pick’s theorem. Golomb Rulers Matthias Beck 6

  22. Enter Geometry Rational polytope P ⊂ R d – convex hull of finitely points in Q d t P ∩ Z d � � For t ∈ Z > 0 let L P ( t ) := # Example: ∆ = conv { (0 , 0) , (1 , 0) , (0 , 1) } ( x, y ) ∈ R 2 : x, y ≥ 0 , x + y ≤ 1 � � = ( x, y ) ∈ Z 2 � � L ∆ ( t ) = # ≥ 0 : x + y ≤ t Golomb Rulers Matthias Beck 7

  23. Enter Geometry Rational polytope P ⊂ R d – convex hull of finitely points in Q d t P ∩ Z d � � For t ∈ Z > 0 let L P ( t ) := # t Example: ∆ = conv { (0 , 0) , (1 , 0) , (0 , 1) } ( x, y ) ∈ R 2 : x, y ≥ 0 , x + y ≤ 1 � � = t � ( x, y ) ∈ Z 2 � L ∆ ( t ) = # ≥ 0 : x + y ≤ t t ( x, y, z ) ∈ Z 3 � � = # ≥ 0 : x + y + z = t Golomb Rulers Matthias Beck 7

  24. Enter Geometry Rational polytope P ⊂ R d – convex hull of finitely points in Q d t P ∩ Z d � � For t ∈ Z > 0 let L P ( t ) := # t Example: ∆ = conv { (0 , 0) , (1 , 0) , (0 , 1) } ( x, y ) ∈ R 2 : x, y ≥ 0 , x + y ≤ 1 � � = t � ( x, y ) ∈ Z 2 � L ∆ ( t ) = # ≥ 0 : x + y ≤ t t ( x, y, z ) ∈ Z 3 � � = # ≥ 0 : x + y + z = t Hmmm . . . � � z 1 + z 2 + z 3 = t z ∈ Z 3 g 3 ( t ) = # > 0 : � j ∈ U z j � = � j ∈ V z j for all dpcs U, V ⊂ [3] Golomb Rulers Matthias Beck 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend