goback towards a general convergence theory for inexact
play

GoBack Towards a general convergence theory for inexact Newton - PowerPoint PPT Presentation

GoBack Towards a general convergence theory for inexact Newton regularizations Andreas Rieder Institut f ur Angewandte und Numerische Mathematik Universit at Karlsruhe Fakult at f ur Mathematik (jointly with Armin Lechleiter,


  1. GoBack

  2. Towards a general convergence theory for inexact Newton regularizations Andreas Rieder Institut f¨ ur Angewandte und Numerische Mathematik Universit¨ at Karlsruhe Fakult¨ at f¨ ur Mathematik (jointly with Armin Lechleiter, Palaiseau) c � Andreas Rieder, Wien, AIP 09 – 1 / 20

  3. Overview REGINN : An inexact Newton REGINN : An inexact Newton regularization regularization Level set based Level set based termination termination Local convergence Local convergence Bibliographical notes Bibliographical notes Conclusion Conclusion c � Andreas Rieder, Wien, AIP 09 – 2 / 20

  4. REGINN : An inexact Newton ⊲ regularization Level set based termination Local convergence Bibliographical notes Conclusion REGINN : An inexact Newton regularization c � Andreas Rieder, Wien, AIP 09 – 3 / 20

  5. Newton regularizations F : D ( F ) ⊂ X → Y, X, Y Hilbert spaces F ( x ) = y δ where � y − y δ � Y ≤ δ , y = F ( x + ) , and F ( x ) = y locally ill-posed in x + . Let x n be an approximation to x + : x n +1 = x n + s N n n = x + − x n satisfies ( A n := F ′ ( x n ) ) The exact Newton step s e A n s e n = y − F ( x n ) − E ( x + , x n ) c � Andreas Rieder, Wien, AIP 09 – 4 / 20

  6. Newton regularizations F : D ( F ) ⊂ X → Y, X, Y Hilbert spaces F ( x ) = y δ where � y − y δ � Y ≤ δ , y = F ( x + ) , and F ( x ) = y locally ill-posed in x + . Let x n be an approximation to x + : x n +1 = x n + s N n n = x + − x n satisfies ( A n := F ′ ( x n ) ) The exact Newton step s e A n s e n = y − F ( x n ) − E ( x + , x n ) Determine s N = ⇒ n as regularized solution of n := y δ − F ( x n ) A n s = b δ b δ n , c � Andreas Rieder, Wien, AIP 09 – 4 / 20

  7. Newton regularizations F : D ( F ) ⊂ X → Y, X, Y Hilbert spaces F ( x ) = y δ where � y − y δ � Y ≤ δ , y = F ( x + ) , and F ( x ) = y locally ill-posed in x + . Let x n be an approximation to x + : x n +1 = x n + s N n n = x + − x n satisfies ( A n := F ′ ( x n ) ) The exact Newton step s e A n s e n = y − F ( x n ) − E ( x + , x n ) Determine s N = ⇒ n as regularized solution of n := y δ − F ( x n ) A n s = b δ b δ n , Let { s n,m } m ∈ N a regularizing sequence. Then, s N n = s n,m n . For instance, s n,m = g m ( A ∗ n A n ) A ∗ n b δ n where g m : [0 , � A n � 2 ] → R is a so-called filter function. c � Andreas Rieder, Wien, AIP 09 – 4 / 20

  8. Newton regularizations (continued) REGINN ( x N ( δ ) , R, { µ n } ) n := 0 ; x 0 := x N ( δ ) ; while � b δ n � Y > Rδ do { m := 0 , s n, 0 = 0 ; repeat m := m + 1 ; compute s n,m from A n s = b δ n ; until � A n s n,m − b δ n � Y < µ n � b δ n � Y x n +1 := x n + s n,m ; n := n + 1 ; } x N ( δ ) := x n ; m ∈ N : � A n s n,m − b δ n � Y < µ n � b δ � � m n = min n � Y c � Andreas Rieder, Wien, AIP 09 – 5 / 20

  9. Assumptions on { s n,m } For the analysis of REGINN we require three properties of the regularizing sequence { s n,m } , namely 1. � A n s n,m , b δ n � Y > 0 ∀ m ≥ 1 whenever A ∗ n b δ n � = 0 , m →∞ A n s n,m = P R ( A n ) b δ 2. lim n , 3. ∃ Θ ≥ 1: � A n s n,m � Y ≤ Θ � b δ n � Y ∀ m, n. If s n,m = g m ( A ∗ n A n ) A ∗ n b δ n and 0 < λg m ( λ ) ≤ C g , λ > 0 , and m →∞ g m ( λ ) = 1 /λ, λ > 0 , lim then all three requirements are fulfilled where Θ ≤ C g . Examples: Landweber, implicit iteration, Tikhonov, Showalter, ν -methods, as well as non-linear methods: steepest decent and conjugate gradients c � Andreas Rieder, Wien, AIP 09 – 6 / 20

  10. First results Lemma: Any direction s n,m is a descent direction in x n for the functional ϕ ( · ) = � y δ − F ( · ) � 2 Y , that is, n b δ �∇ ϕ ( x n ) , s n,m � X < 0 for m ≥ 1 whenever A ∗ n � = 0 . Lemma: Assume that � P R ( A n ) ⊥ b δ n � Y < � b δ n � Y . Then, for any tolerance � � P R ( A n ) ⊥ b δ n � Y � µ n ∈ , 1 � b δ n � Y the repeat -loop of REGINN terminates. Remark: Under � P R ( A n ) ⊥ b δ n � Y = � b δ n � Y , that is, � P R ( A n ) b δ n � Y = 0 we have s n,m = 0 for all m . c � Andreas Rieder, Wien, AIP 09 – 7 / 20

  11. REGINN : An inexact Newton regularization Level set based ⊲ termination Local convergence Bibliographical notes Conclusion Level set based termination c � Andreas Rieder, Wien, AIP 09 – 8 / 20

  12. Structural assumptions on non-linearity For x 0 ∈ D ( F ) such that � F ( x 0 ) − y δ � Y > δ define the level set x ∈ D ( F ): � F ( x ) − y δ � Y ≤ � F ( x 0 ) − y δ � � � L ( x 0 ) := . Note that x + ∈ L ( x 0 ) . Assume � F ( v ) − F ( w ) − F ′ ( w )( v − w ) � Y ≤ L � F ′ ( w )( v − w ) � Y � ⊥ F ′ ( w ) � for one L < 1 and for all v, w ∈ L ( x 0 ) with v − w ∈ N and � �� � � P R ( F ′ ( u )) ⊥ y − F ( u ) Y ≤ ̺ � y − F ( u ) � Y � for one ̺ < 1 and all u ∈ L ( x 0 ) . Remark: L < 1 L = ⇒ ̺ ≤ 1 − L < 1 2 c � Andreas Rieder, Wien, AIP 09 – 9 / 20

  13. Example Let { v n } and { u n } be ONB in separable Hilbert spaces X and Y , resp. We define operator F : X → Y by ∞ 1 � � � F ( x ) = nf � x, v n � X u n n =1 where f : R → R is smooth with f ′ ( · ) ≥ f ′ min > 0 . Here, R ( F ′ ( x )) = Y for any x ∈ X . Thus, ̺ = 0 . min then L = f ′ max − f ′ If, further, f ′ ( · ) ≤ f ′ max with f ′ max < 2 f ′ < 1 . min f ′ min c � Andreas Rieder, Wien, AIP 09 – 10 / 20

  14. Termination Theorem: Let Θ L + ̺ < Λ for one Λ < 1 . Further, choose 1 + ̺ R > Λ − Θ L − ̺. Finally, select all tolerances { µ n } such that with µ min ,n := (1 + ̺ ) δ � � µ n ∈ µ min ,n , Λ − Θ L , + ̺. � b δ n � Y Then, there exists an N ( δ ) such that { x 1 , . . . , x N ( δ ) } ⊂ L ( x 0 ) . Moreover, only the final iterate satisfies the discrepancy principle, that is, � y δ − F ( x N ( δ ) ) � Y ≤ Rδ, and � y δ − F ( x n +1 ) � Y < µ n + θ n L ≤ Λ , n = 0 , . . . , N ( δ ) − 1 , � y δ − F ( x n ) � Y where θ n = � A n s N n � Y / � b δ n � Y ≤ Θ . Remark: Although � y − F ( x N ( δ ) ) � Y < ( R + 1) δ we do not have convergence of { x N ( δ ) } as δ → 0 in general. c � Andreas Rieder, Wien, AIP 09 – 11 / 20

  15. REGINN : An inexact Newton regularization Level set based termination Local ⊲ convergence Bibliographical notes Conclusion Local convergence c � Andreas Rieder, Wien, AIP 09 – 12 / 20

  16. Additional assumptions on { s n,m } Monotonicity: Let there be a continuous and monotonically increasing function Ψ: R → R with t ≤ Ψ( t ) for t ∈ [0 , 1] such that if n − A n s e γ n = � b δ n � Y / � b δ n � Y < 1 and � b δ n − A n s n,m − 1 � Y / � b δ n � Y ≥ Ψ( γ n ) then � s n,m − s e n � X < � s n,m − 1 − s e n � X . δ → 0 s n,m ( y δ ) = s n,m ( y ) . Stability: lim Examples: Landweber iteration and steepest decent: Ψ( t ) = 2 t , Implicit iteration: Ψ( t ) = Ct where C > 2 , √ cg-method: Ψ( t ) = 2 t . c � Andreas Rieder, Wien, AIP 09 – 13 / 20

  17. Modified structural assumption Assume � F ( v ) − F ( w ) − F ′ ( w )( v − w ) � Y ≤ L � F ′ ( w )( v − w ) � Y for one L < 1 and for all v, w ∈ B r ( x + ) ⊂ D ( F ) . c � Andreas Rieder, Wien, AIP 09 – 14 / 20

  18. Monotonicity and Convergence Theorem: Let L � � Ψ + Θ L < Λ for one Λ < 1 1 − L and define � 1 � � 1 � µ min := Ψ R + L . 1 − L Choose R so large that µ min + Θ L < Λ . Restrict all tolerances { µ n } to ] µ min , Λ − Θ L ] and start with x 0 ∈ B r ( x + ) . Then, � x + − x n � X < � x + − x n − 1 � X , n = 1 , . . . , N ( δ ) , and, if x + is unique in B r ( x + ) , δ → 0 � x + − x N ( δ ) � X = 0 . lim c � Andreas Rieder, Wien, AIP 09 – 15 / 20

  19. REGINN : An inexact Newton regularization Level set based termination Local convergence Bibliographical ⊲ notes Conclusion Bibliographical notes c � Andreas Rieder, Wien, AIP 09 – 16 / 20

  20. Bibliographical notes B. Kaltenbacher, A. Neubauer, O. Scherzer Iterative Regularization Methods for Nonlinear Ill-posed Problems de Gruyter, Berlin, 2007 A. Lechleiter, A. Rieder Towards a general convergence theory for inexact Newton regularizations Numer. Math., to appear ( download from my webpage ), M. Hanke Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems Numer. Funct. Anal. Optim. 18 (1998), 971-993. Q. Jin and U. Tautenhahn On the discrepancy principle for some Newton type methods for solving nonlinear ill-posed problems Numer. Math., 111 (2009), 509-558. c � Andreas Rieder, Wien, AIP 09 – 17 / 20

  21. REGINN : An inexact Newton regularization Level set based termination Local convergence Bibliographical notes ⊲ Conclusion Conclusion c � Andreas Rieder, Wien, AIP 09 – 18 / 20

  22. What to remember from this talk We have presented a convergence theory for algorithm REGINN which is based on only 5 features of the underlying inner regularization scheme. These features are rather general and are shared by a variety of schemes being so different as Landweber, steepest decent, implicit iteration, and cg-method. c � Andreas Rieder, Wien, AIP 09 – 19 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend