goal oriented mesh adaptation for fsi problems
play

Goal-oriented mesh adaptation for FSI problems eonore Gauci + , - PowerPoint PPT Presentation

Goal-oriented mesh adaptation for FSI problems eonore Gauci + , Fr eric Alauzet + , Alain Dervieux El ed ( + ) INRIA, Team Gamma3, Saclay, France ( ) INRIA, Team Ecuador, Sophia-Antipolis, France Eccomas Hersonissos, June


  1. Goal-oriented mesh adaptation for FSI problems ´ eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ El´ ed´ ( + ) INRIA, Team Gamma3, Saclay, France ( ∗ ) INRIA, Team Ecuador, Sophia-Antipolis, France Eccomas Hersonissos, June 2016 eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 1 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  2. Motivations Objective Combine goal-oriented mesh adaptation and simulations with moving bodies. Main numerical difficulty How to handle the geometry displacement ? eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 2 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  3. 1 Scientific Context 2 ALE mesh adaptation 3 Goal-oriented mesh adaptation 4 Coupling Goal-oriented method and ALE method eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 3 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  4. Mesh Adaptation Main idea : introduce the use of metrics field, and notion of unit mesh. [George, Hecht and Vallet., Adv Eng. Software 1991] Riemannian metric space: M : d × d symmetric definite positive matrix � 1 � u , v � M = t u M v ⇒ ℓ M ( a , b ) = � t ab M ( a + tab ) ab d t 0 √ � | K | M = det M d | K | K continuous Metric Field → discrete Mesh . eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 4 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  5. Time-accurate Feature-based Mesh Adaptation Deriving the best mesh to compute the characteristics of a given solution w in space and time [Tam et al.,CMAME 2000], [Picasso, SIAMJSC 2003], [Formaggia et al, ANM 2004 ], [Frey and Alauzet CMAME 2005], [Gruau and Coupez, CMAME 2005 ], [Huang, JCP 2005 ], [Compere et al., 2007 ] Discrete space-time mesh adaptation problem : Find H opt L p having N st vertices such that H opt L p = Argmin H || u − Π h u || H , L p (Ω × [0 , T ]) Well-posed Continuous space-time mesh adaptation problem : Find M opt L p of complexity N st such that �� T � � Trace ( M ( x , t ) − 1 2 | H u ( x , t ) |M ( x , t ) − 1 1 E L p ( M opt 2 ) p d x d t L p ) = min M p 0 Ω ⇒ Solved by variational calculus eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 5 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  6. Time-accurate Feature-based Mesh Adaptation Optimal Mesh �� T � 2 − 2 p − 2 2 − 1 M opt 2 p +3 K ( t ) d t 2 p +3 (det | H u ( x , t ) | ) 2 p +3 | H u ( x , t ) | 3 τ ( t ) L p = N τ ( t ) 3 st 0 p �� � 2 p +3 d x with K ( t ) = Ω (det | H u ( x , t ) | ) Global normalization term requires the whole computation A global fixed-point algorithm ⇒ to compute the space-time metric complexity ⇒ to converge the non-linear mesh adaptation problem ⇒ to predict the solution evolution Split the simulation into several time sub-intervals and set an adapted mesh for each sub-interval ⇒ to limit the number of meshes [0 , T ] = [ t 0 = 0 , t 1 ] ∪ [ t 1 , t 2 ] ∪ ... [ t kmax , T ] eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 6 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  7. Unsteady Feature-based Mesh Adaptation : Algorithm For j=1,nptfx For i=1,nadap S j 0 , i = InterpolateSolution ( H j i − 1 , S j i − 1 , H j i ) S j i = SolveState ( S j 0 , i , H j i ) | H max | j i = ComputeHessianMetric ( H j i , {S j i ( k ) } k =1 , nk ) C j = ComputeSpaceTimeComplexity ( {| H max | j End for i } i =1 , nadap ) M j − 1 = ComputeUnsteadyLpMetrics ( C j − 1 , | H max | j − 1 ) i i H j i = GenerateAdaptedMeshes ( H j − 1 , M j − 1 ) i i End for [0 , T ] = [ t 0 = 0 , t 1 ] ∪ [ t 1 , t 2 ] ∪ ... [ t kmax , T ] eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 7 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  8. Unsteady Feature-based mesh adaptation in ALE : Algorithm For j=1,nptfx For i=1,nadap S j 0 , i = InterpolateSolution ( H j i − 1 , S j i − 1 , H j i ) S j i = SolveState ( S j 0 , i , H j i ) | H max | j i = ComputeHessianMetric ( H j i , {S j i ( k ) } k =1 , nk ) C j = ComputeSpaceTimeComplexity ( {| H max | j i } i =1 , nadap ) End for M j − 1 = ComputeUnsteadyLpMetrics ( C j − 1 , | H max | j − 1 ) i i H j i = GenerateAdaptedMeshes ( H j − 1 , M j − 1 ) i i End for [0 , T ] = [ t 0 = 0 , t 1 ] ∪ [ t 1 , t 2 ] ∪ ... [ t kmax , T ] It is then possible to take into account the mesh motion inside the error estimate = ⇒ optimal space-time adapted mesh in ALE framework Mesh optimization for moving meshes As mesh quality tends to decrease while the mesh is moving ⇒ regular optimization phases must be performed : smoothing and edge swapping eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 8 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  9. Unsteady Feature-based mesh adaptation in ALE : Two F117s crossing flight paths Two planes moved at Mach 0.4 inside an inert air. The planes are translated and rotating 50 sub intervals and 3 adaptation loops Total space time complexity: 36 , 000 , 000 vertices, average mesh size: 732 , 000 vertices, 80 , 000 timesteps eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 9 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  10. 2D Pilot case Blast initialization : high density (10, 0 ,25) and air (1, 0 ,2.5) 2D geometry : (5 x 0.5 m 2 ) : 2395 Vertices � T 1 � 2 ( p − p air ) 2 d Γ d t . cost function j : j : j ( W ) = 0 Γ eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 10 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  11. 2D Pilot case eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 11 El´ ed´ Goal-oriented mesh adaptation for FSI problems Figure:

  12. Goal-oriented mesh adaptation : Introduction of the Adjoint State Deriving the best mesh to observe a given output scalar functional j ( w ) = � g , w � [Venditti and Darmofal, JCP 2003], [Jones et al., AIAA 2006], [Power et al, CMA 2006 ], [Wintzer et al., AIAA 2008], [Leicht and Hartmann, JCP 2010 ] Let W be the solution of the state equation Ψ( W ) = 0 Choose a scalar functional j . Minimize δ j h = | j − j h | = | ( g , W ) − ( g , W h ) | Introduce the adjoint state W ∗ � ∂ Ψ h � ϕ h , W ∗ = ( g , ϕ h ) h ∂ W h to estimate the error δ j h ≈ ( W ∗ , Ψ h ( W ) − Ψ( W )) Minimize δ j h with an a priori error estimate eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 12 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  13. Unsteady Adjoint Resolution (Euler Equation) The continuous state model on Ω × [0 , T ] obeys to : Ψ( W ) = 0 The discrete state model writes : n = W h n − 1 + δ t n Φ h ( W n − 1 W h ) h Consider a time-dependent functional : � T � j ( W ) = j Γ ( W ( x , t ) d x d t 0 Γ The continuous adjoint state on Ω × [0 , T ] obeys to : � ∂ F − ∂ W ∗ � ∇ W ∗ = g Ψ ∗ ( W , W ∗ ) = 0 or − (1) ∂ t ∂ W The discrete adjoint state writes : ∗ , n + δ t n ∂ j n − 1 ∂ Φ h ∗ , n − 1 = W h ( W n − 1 ∗ , n ) T ( W n − 1 h ) − δ t n ( W h ) W h ∂ W n − 1 h ∂ W n − 1 h h h eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 13 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  14. Time accurate Goal-oriented mesh adaptation Difficulties Computing W ∗ , n − 1 at time t n − 1 requires the knowledge of state W n − 1 and adjoint state W ∗ , n ⇒ the knowledge of all states W n , n = 1 · · · N is needed Solve state foreward: Ψ( W ) = 0 Solve adjoint state backward: Ψ ∗ ( W, W ∗ ) = 0 ⇒ Large memory storage effort in 3D (10 6 vertices & 10 3 iterations request 37.25 Gb) Adopted solution Solve state once to get checkpoints State interpolation between two memory storage eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 14 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  15. Unsteady Feature-based mesh adaptation : Algorithm For j=1,nptfx For i=1,nadap S j 0 , i = ConservativeSolutionTransfer ( H j i − 1 , S j i − 1 , H j i ) S j i = SolveState ( S j 0 , i , H j i ) End for For i=nadap,1 ( S ∗ ) j i = AdjointStateTransfer ( H j 0 ) j i +1 , H j i +1 , ( S ∗ i ) {S j i ( k ) , ( S ∗ ) j i ( k ) } = SolveStateAndAdjointBackward ( S j 0 , i , ( S ∗ ) j i , H j i ) | H max | j i = ComputeGoalOrientedHessianMetric ( H j i , {S j i ( k ) , ( S ∗ ) j i ( k ) } ) End for C j = ComputeSpaceTimeComplexity ( {| H max | j i } i =1 , nadap ) M j i = ComputeUnsteadyLpMetrics ( C j − 1 , | H max | j − 1 ) i H j +1 = GenerateAdaptedMeshes ( H j i , M j i ) i End for Solve state once to get checkpoints Ψ( W ) = 0 Ψ( W ) = 0 Ψ ∗ ( W, W ∗ ) = 0 Solve state and backward adjoint state from checkpoints eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 15 El´ ed´ Goal-oriented mesh adaptation for FSI problems

  16. Blast in the city Blast initialization : high density (10,0,0,0,25) and air (1,0,0,0,2.5) 3D town geometry (85 x 70 x 70 m 3 ) : 4187548 vertices � T 2 ( p − p air ) 2 d Γ d t . 1 � cost function j : j ( W ) = 0 Γ The observation Γ are these 2 buildings eonore Gauci ∗ + , Fr´ eric Alauzet + , Alain Dervieux ∗ ´ 16 El´ ed´ Goal-oriented mesh adaptation for FSI problems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend