generalization of factor graphs and belief propagation
play

Generalization of Factor Graphs and Belief Propagation for Quantum - PowerPoint PPT Presentation

Generalization of Factor Graphs and Belief Propagation for Quantum Information Science End-of-First-Year Oral Exam Michael X. CAO Department of Information Engineering, CUHK September 25, 2015 Michael X. CAO (IE@CUHK) Quantum Factor Graph


  1. Classical Factor Graphs Modeling Factor Graph representing Factorization In general, a factor graph for factorization � g ( x ) = f a ( x ∂ a ) a ∈F is a bipartite graph G = ( F , V , E ) between F and V with edge set E = { ( i , a ) ∈ F × V : i ∈ ∂ a } . z u A p u A u B q B b B b B b A y x p = = q u B b A x z z ′ y z ′ A standard factor graph A normal factor graph Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 4

  2. Classical Factor Graphs “Closing-the-box” Operation Outline Classical Factor Graphs 1 Modeling “Closing-the-box” Operation Quantum Factor Graphs 2 A Motivating Example Quantum Factor Graph Construction of a QNFG Several Examples Problem of Calculating the Partition Sum 3 Sum-Product / Belief Propagation Algorithm Exploration on Variational Approach End Matters 4 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 5

  3. Classical Factor Graphs “Closing-the-box” Operation Normal Factor Graph and “Closing-the-box” Operation Traditionally, we assume all the factors to be nonnegative. Thus, any marginal function is still a measure . x 0 x 1 x 2 x 3 p 0 p 1 p 2 p 3 y 1 y 2 y 3 Normal Factor Graph for a hidden Markov model of length 3: p ( y 1 , . . . , y 3 , x 0 , . . . , x 3 ) = p 0 ( x 0 ) � 3 k =1 p k ( y k , x k | x k − 1 ) Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 5

  4. Classical Factor Graphs “Closing-the-box” Operation Normal Factor Graph and “Closing-the-box” Operation Traditionally, we assume all the factors to be nonnegative. Thus, any marginal function is still a measure . x 0 x 1 x 2 x 3 p 0 p 1 p 2 p 3 y 1 y 2 y 3 Normal Factor Graph for a hidden Markov model of length 3: p ( y 1 , . . . , y 3 , x 0 , . . . , x 3 ) = p 0 ( x 0 ) � 3 k =1 p k ( y k , x k | x k − 1 ) Exterior Function of above dashed box: p Y 1 , Y 2 , Y 3 | X 0 ( y 1 , y 2 , y 3 | x 0 ) = � p 1 ( y 1 , x 1 | x 0 ) p 2 ( y 2 , x 2 | x 1 ) p 3 ( y 3 , x 3 | x 2 ) . x 1 , x 2 , x 3 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 5

  5. Classical Factor Graphs “Closing-the-box” Operation Normal Factor Graph and “Closing-the-box” Operation Traditionally, we assume all the factors to be nonnegative. Thus, any marginal function is still a measure . x 0 p 0 p Y 1 , Y 2 , Y 3 | X 0 ( y 1 , y 2 , y 3 | x 0 ) y 1 y 2 y 3 Normal Factor Graph for a hidden Markov model of length 3: p ( y 1 , . . . , y 3 , x 0 , . . . , x 3 ) = p 0 ( x 0 ) � 3 k =1 p k ( y k , x k | x k − 1 ) Exterior Function of above dashed box: p Y 1 , Y 2 , Y 3 | X 0 ( y 1 , y 2 , y 3 | x 0 ) = � p 1 ( y 1 , x 1 | x 0 ) p 2 ( y 2 , x 2 | x 1 ) p 3 ( y 3 , x 3 | x 2 ) . x 1 , x 2 , x 3 “Closing-the-box” Operation: Replacing the box with a factor corresponding to its exterior function Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 5

  6. Quantum Factor Graphs A Motivating Example Outline Classical Factor Graphs 1 Modeling “Closing-the-box” Operation Quantum Factor Graphs 2 A Motivating Example Quantum Factor Graph Construction of a QNFG Several Examples Problem of Calculating the Partition Sum 3 Sum-Product / Belief Propagation Algorithm Exploration on Variational Approach End Matters 4 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 6

  7. Quantum Factor Graphs A Motivating Example Factor Graph representing Quantum Probabilities Factor graphs can be used to represent quantum probabilities if more general factors are allowed [Loeliger and Vontobel, 2015, Loeliger and Vontobel, 2012]. X Y = U B H = p ( x ) B U H Factor graph for an elementary quantum system The global function: x , x ) U H ( x , ˜ x ′ ) B H ( y , ˜ x ′ ) � p ( x ) U (˜ x ′ , y ) g ( x , y , ˜ x , ˜ x ) B (˜ x ′ , y ) U (˜ = p ( x ) U (˜ x , x ) B (˜ x ′ , x ) B (˜ x , y ) . Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 6

  8. Quantum Factor Graphs A Motivating Example Factor Graph representing Quantum Probabilities Factor graphs can be used to represent quantum probabilities if more general factors are allowed [Loeliger and Vontobel, 2015, Loeliger and Vontobel, 2012]. X Y = U B H = p ( x ) B U H p Y | X ( y | x ) Factor graph for an elementary quantum system The exterior function of the dashed box: � x ′ , y ) U (˜ p Y | X ( y | x ) = U (˜ x , x ) B (˜ x ′ , x ) B (˜ x , y ) x ′ x , ˜ ˜ 2 � � � � � = U (˜ x , x ) B (˜ x , y ) . � � � � � ˜ � x Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 6

  9. Quantum Factor Graphs A Motivating Example Factor Graph representing Quantum Probabilities Factor graphs can be used to represent quantum probabilities if more general factors are allowed [Loeliger and Vontobel, 2015, Loeliger and Vontobel, 2012]. X Y = U B H = p ( x ) B U H Factor graph for an elementary quantum system x 0 x 1 x 2 x 3 p 0 p 1 p 2 p 3 y 1 y 2 y 3 Normal Factor Graph for a hidden Markov model of length 3: p ( y 1 , . . . , y 3 , x 0 , . . . , x 3 ) = p 0 ( x 0 ) � 3 k =1 p k ( y k , x k | x k − 1 ) Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 6

  10. Quantum Factor Graphs A Motivating Example Factor Graph representing Quantum Probabilities Factor graphs can be used to represent quantum probabilities if more general factors are allowed [Loeliger and Vontobel, 2015, Loeliger and Vontobel, 2012]. X Y = U B H = p ( x ) B U H Factor graph for an elementary quantum system X Y = B H = ˆ U p ( x ) B Redraw of above Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 6

  11. Quantum Factor Graphs A Motivating Example Factor Graph representing Quantum Probabilities Factor graphs can be used to represent quantum probabilities if more general factors are allowed [Loeliger and Vontobel, 2015, Loeliger and Vontobel, 2012]. X Y = U B H = p ( x ) B U H Factor graph for an elementary quantum system X Y = = ˆ ˆ U B p ( x ) Redraw of above Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 6

  12. Quantum Factor Graphs Quantum Factor Graph Outline Classical Factor Graphs 1 Modeling “Closing-the-box” Operation Quantum Factor Graphs 2 A Motivating Example Quantum Factor Graph Construction of a QNFG Several Examples Problem of Calculating the Partition Sum 3 Sum-Product / Belief Propagation Algorithm Exploration on Variational Approach End Matters 4 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 7

  13. ✶ ✶ Quantum Factor Graphs Quantum Factor Graph Quantum Normal Factor Graph (QNFG) as a simplified model ˜ ˜ X X Y Y ˆ ˆ ˆ P U B X ′ ˜ ˜ X ′ Y ′ diag ( p ( x )) I y Redraw of last example In this case, we have Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 7

  14. Quantum Factor Graphs Quantum Factor Graph Quantum Normal Factor Graph (QNFG) as a simplified model ˜ ˜ X X Y Y ˆ ˆ ˆ P U B X ′ ˜ ˜ X ′ Y ′ diag ( p ( x )) I y Redraw of last example In this case, we have Global function: g ( x , x ′ , ˜ x ′ , ˜ y ′ , y ) = p ( x ) U (˜ x ′ , y ) U (˜ x ′ , x ) B (˜ x , ˜ y , ˜ x , x ) B (˜ x , y ) y ′ = y } · ✶ { x = x ′ } ✶ { ˜ y = ˜ Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 7

  15. Quantum Factor Graphs Quantum Factor Graph Quantum Normal Factor Graph (QNFG) as a simplified model ˜ ˜ X X Y Y ˆ ˆ ˆ P U B X ′ ˜ ˜ X ′ Y ′ f 1 diag ( p ( x )) I y Redraw of last example In this case, we have Global function: g ( x , x ′ , ˜ x ′ , ˜ y ′ , y ) = p ( x ) U (˜ x ′ , y ) U (˜ x ′ , x ) B (˜ x , ˜ y , ˜ x , x ) B (˜ x , y ) y ′ = y } · ✶ { x = x ′ } ✶ { ˜ y = ˜ � ˆ x ′ , x ′ ) · ˆ y ) , ( x ′ , ˜ y ′ ) x ′ , ˜ y ′ ) � � Exterior function: f 1 ( x , ˜ = U (˜ x , x ; ˜ B (˜ x , ˜ y ; ˜ x ′ x , ˜ ˜ Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 7

  16. Quantum Factor Graphs Quantum Factor Graph Quantum Normal Factor Graph (QNFG) as a simplified model ˜ ˜ X X Y Y ˆ ˆ ˆ P U B X ′ ˜ ˜ X ′ Y ′ f 1 diag ( p ( x )) I y Redraw of last example In this case, we have Global function: g ( x , x ′ , ˜ x ′ , ˜ y ′ , y ) = p ( x ) U (˜ x ′ , y ) U (˜ x ′ , x ) B (˜ x , ˜ y , ˜ x , x ) B (˜ x , y ) y ′ = y } · ✶ { x = x ′ } ✶ { ˜ y = ˜ � � U , ˆ ˆ y ) , ( x ′ , ˜ y ′ ) � � Exterior function: f 1 ( x , ˜ = B L H ( ˜ X ) Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 7

  17. Quantum Factor Graphs Quantum Factor Graph Quantum Normal Factor Graph (QNFG) as a simplified model ˜ ˜ X X Y Y ˆ ˆ ˆ P U B X ′ ˜ ˜ X ′ Y ′ f 1 diag ( p ( x )) I y f 2 Redraw of last example In this case, we have Global function: g ( x , x ′ , ˜ x ′ , ˜ y ′ , y ) = p ( x ) U (˜ x ′ , y ) U (˜ x ′ , x ) B (˜ x , ˜ y , ˜ x , x ) B (˜ x , y ) y ′ = y } · ✶ { x = x ′ } ✶ { ˜ y = ˜ � � U , ˆ ˆ y ) , ( x ′ , ˜ y ′ ) � � Exterior function: f 1 ( x , ˜ = B L H ( ˜ X ) � � � Exterior function: f 2 ( y ) = p ( x ) f 1 ( x , y ) , ( x , y ) x Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 7

  18. Quantum Factor Graphs Quantum Factor Graph Quantum Normal Factor Graph (QNFG) as a simplified model ˜ ˜ X X Y Y ˆ ˆ ˆ P U B X ′ ˜ ˜ X ′ Y ′ f 1 diag ( p ( x )) I y f 2 Redraw of last example In this case, we have Global function: g ( x , x ′ , ˜ x ′ , ˜ y ′ , y ) = p ( x ) U (˜ x ′ , y ) U (˜ x ′ , x ) B (˜ x , ˜ y , ˜ x , x ) B (˜ x , y ) y ′ = y } · ✶ { x = x ′ } ✶ { ˜ y = ˜ � � U , ˆ ˆ y ) , ( x ′ , ˜ y ′ ) � � Exterior function: f 1 ( x , ˜ = B L H ( ˜ X ) � � ˆ Exterior function: f 2 ( y ) = P ⊗ I y , f 1 L H ( X⊗ ˜ Y ) Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 7

  19. Quantum Factor Graphs Quantum Factor Graph Quantum Normal Factor Graph (QNFG) as a simplified model ˜ ˜ X X Y Y ˆ ˆ ˆ P U B X ′ ˜ ˜ X ′ Y ′ diag ( p ( x )) I y Redraw of last example Definition 1 (Quantum Normal Factor Graph) A quantum normal factor graph or QNFG is a normal factor graph where each variable edge may stands for one or a pair of variables. For each factor (indexed by a ∈ F ) f a ( x ∂ a , x ′ ∂ a ; y δ a ) is a PSD operator over X ∂ a , given y δ a fixed arbitrarily. Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 7

  20. Quantum Factor Graphs Quantum Factor Graph Quantum Normal Factor Graph (QNFG) as a simplified model ˜ ˜ X X Y Y ˆ ˆ ˆ P U B X ′ ˜ ˜ X ′ Y ′ diag ( p ( x )) I y Redraw of last example Definition 1 (Quantum Normal Factor Graph) A quantum normal factor graph or QNFG is a normal factor graph where each variable edge may stands for one or a pair of variables. For each factor (indexed by a ∈ F ) f a ( x ∂ a , x ′ ∂ a ; y δ a ) is a PSD operator over X ∂ a , given y δ a fixed arbitrarily. Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 7

  21. Quantum Factor Graphs Quantum Factor Graph Quantum Normal Factor Graph (QNFG) as a simplified model ˜ ˜ X X Y Y ˆ ˆ ˆ P U B X ′ ˜ ˜ X ′ Y ′ diag ( p ( x )) I y Redraw of last example Definition 1 (Quantum Normal Factor Graph) A quantum normal factor graph or QNFG is a normal factor graph where each variable edge may stands for one or a pair of variables. For each factor (indexed by a ∈ F ) f a ( x ∂ a , x ′ ∂ a ; y δ a ) is a PSD operator over X ∂ a , given y δ a fixed arbitrarily. Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 7

  22. Quantum Factor Graphs Quantum Factor Graph Quantum Normal Factor Graph (QNFG) as a simplified model ˜ ˜ X X Y Y ˆ ˆ ˆ P U B X ′ ˜ ˜ X ′ Y ′ diag ( p ( x )) I y Redraw of last example Definition 1 (Quantum Normal Factor Graph) A quantum normal factor graph or QNFG is a normal factor graph where each variable edge may stands for one or a pair of variables. For each factor (indexed by a ∈ F ) f a ( x ∂ a , x ′ ∂ a ; y δ a ) is a PSD operator over X ∂ a , given y δ a fixed arbitrarily. Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 7

  23. Quantum Factor Graphs Quantum Factor Graph Quantum Normal Factor Graph (QNFG) as a simplified model ˜ ˜ X X Y Y ˆ ˆ ˆ P U B X ′ ˜ ˜ X ′ Y ′ diag ( p ( x )) I y Redraw of last example Definition 1 (Quantum Normal Factor Graph) A quantum normal factor graph or QNFG is a normal factor graph where each variable edge may stands for one or a pair of variables. For each factor (indexed by a ∈ F ) f a ( x ∂ a , x ′ ∂ a ; y δ a ) is a PSD operator over X ∂ a , given y δ a fixed arbitrarily. We can defined quantum factor graph (QFG) similarly, allowing some variable nodes to have degree higher than 2. Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 7

  24. Quantum Factor Graphs Construction of a QNFG Outline Classical Factor Graphs 1 Modeling “Closing-the-box” Operation Quantum Factor Graphs 2 A Motivating Example Quantum Factor Graph Construction of a QNFG Several Examples Problem of Calculating the Partition Sum 3 Sum-Product / Belief Propagation Algorithm Exploration on Variational Approach End Matters 4 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 8

  25. Quantum Factor Graphs Construction of a QNFG Conversion into QNFG: Squeeze Classical factor graph Quantum Normal Factor Graph U ˆ U U H ˆ x ′ , x ′ )) � U (˜ x ′ , x ′ ) U ((˜ x , x ) , (˜ x , x ) · U (˜ = vec ( U ) vec ( U ) H Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 8

  26. Quantum Factor Graphs Construction of a QNFG Conversion into QNFG: Equality Classical factor graph Quantum Normal Factor Graph X X = X ′ I X ′ I is the identity matrix, i.e., I ( x , x ′ ) = δ ( x , x ′ ). Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 8

  27. Quantum Factor Graphs Construction of a QNFG Conversion into QNFG: Merge Classical factor graph Quantum Normal Factor Graph X X = X ′ diag ( p ( x )) p ( x ) X ′ � if x = x ′ p ( x ) diag ( p ) ( x , x ′ ) = 0 otherwise Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 8

  28. Quantum Factor Graphs Construction of a QNFG Conversion into QNFG: Parametrize Classical factor graph Quantum Normal Factor Graph ˜ Y ˜ Y Y Y = ˜ Y ′ I y ˜ Y ′ � y ′ = y 1 if ˜ y = ˜ y ′ ) = I y (˜ y , ˜ 0 otherwise Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 8

  29. Quantum Factor Graphs Several Examples Outline Classical Factor Graphs 1 Modeling “Closing-the-box” Operation Quantum Factor Graphs 2 A Motivating Example Quantum Factor Graph Construction of a QNFG Several Examples Problem of Calculating the Partition Sum 3 Sum-Product / Belief Propagation Algorithm Exploration on Variational Approach End Matters 4 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  30. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y Unitary Evolution over time in n steps followed by a single projective measure Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  31. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ρ 1 Unitary Evolution over time in n steps followed by a single projective measure � � � ˆ ρ 1 ( x 1 , x ′ ( x 1 , x ) , ( x ′ 1 , x ′ ) p ( x , x ′ ) δ ( x , x ′ ) 1 ) = U 1 x , x ′ Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  32. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ρ 1 Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ρ 1 ( x 1 , x ′ ( x 1 , x ) , ( x ′ 1 , x ′ ) p ( x , x ′ ) δ ( x , x ′ ) = 1 ) = U 1 U 1 , diag ( p ) L H ( X ) x , x ′ Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  33. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ρ 1 ρ 2 Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ρ 1 ( x 1 , x ′ ( x 1 , x ) , ( x ′ 1 , x ′ ) p ( x , x ′ ) δ ( x , x ′ ) = 1 ) = U 1 U 1 , diag ( p ) L H ( X ) x , x ′ � � ρ 2 ( x 2 , x ′ � ˆ ( x 2 , x 1 ) , ( x ′ 2 , x ′ ρ ( x 1 , x ′ 2 ) = 1 ) 1 ) U 2 x 1 , x ′ 1 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  34. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ρ 1 ρ 2 Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ρ 1 ( x 1 , x ′ ( x 1 , x ) , ( x ′ 1 , x ′ ) p ( x , x ′ ) δ ( x , x ′ ) = 1 ) = U 1 U 1 , diag ( p ) L H ( X ) x , x ′ � � � � ρ 2 ( x 2 , x ′ � ˆ ( x 2 , x 1 ) , ( x ′ 2 , x ′ ρ ( x 1 , x ′ ˆ 2 ) = 1 ) 1 ) = U 2 U 2 , ρ 1 L H ( X 1 ) x 1 , x ′ 1 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  35. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ρ 1 ρ 2 ρ n Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ρ 1 ( x 1 , x ′ ( x 1 , x ) , ( x ′ 1 , x ′ ) p ( x , x ′ ) δ ( x , x ′ ) = 1 ) = U 1 U 1 , diag ( p ) L H ( X ) x , x ′ � � � � ρ 2 ( x 2 , x ′ � ˆ ( x 2 , x 1 ) , ( x ′ 2 , x ′ ρ ( x 1 , x ′ ˆ 2 ) = 1 ) 1 ) = U 2 U 2 , ρ 1 L H ( X 1 ) x 1 , x ′ 1 � � � ρ n ( x n , x ′ � ˆ x ′ n , x ′ x n − 1 , x ′ � � � n ) = ( x n , x n − 1 ) , U n − 1 ρ n − 1 n − 1 x n − 1 , x ′ n − 1 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  36. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ρ 1 ρ 2 ρ n Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ρ 1 ( x 1 , x ′ ( x 1 , x ) , ( x ′ 1 , x ′ ) p ( x , x ′ ) δ ( x , x ′ ) = 1 ) = U 1 U 1 , diag ( p ) L H ( X ) x , x ′ � � � � ρ 2 ( x 2 , x ′ � ˆ ( x 2 , x 1 ) , ( x ′ 2 , x ′ ρ ( x 1 , x ′ ˆ 2 ) = 1 ) 1 ) = U 2 U 2 , ρ 1 L H ( X 1 ) x 1 , x ′ 1 � � � ρ n ( x n , x ′ � ˆ x ′ n , x ′ x n − 1 , x ′ � � � n ) = ( x n , x n − 1 ) , U n − 1 ρ n − 1 n − 1 x n − 1 , x ′ n − 1 � � ˆ = U n , ρ n − 1 L H ( X n − 1 ) Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  37. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ρ 1 ρ 2 ρ n Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ρ 1 ( x 1 , x ′ ( x 1 , x ) , ( x ′ 1 , x ′ ) p ( x , x ′ ) δ ( x , x ′ ) = 1 ) = U 1 U 1 , diag ( p ) L H ( X ) x , x ′ � � � � ρ 2 ( x 2 , x ′ � ˆ ( x 2 , x 1 ) , ( x ′ 2 , x ′ ρ ( x 1 , x ′ ˆ 2 ) = 1 ) 1 ) = U 2 U 2 , ρ 1 L H ( X 1 ) x 1 , x ′ 1 � � � ρ n ( x n , x ′ � ˆ x ′ n , x ′ x n − 1 , x ′ � � � n ) = ( x n , x n − 1 ) , U n − 1 ρ n − 1 n − 1 x n − 1 , x ′ n − 1 � � ˆ = U n , ρ n − 1 L H ( X n − 1 ) Schr¨ odinger representation. Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  38. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ϕ n Unitary Evolution over time in n steps followed by a single projective measure � � � ˆ ϕ n ( x n , x ′ ( x n , y ) , ( x ′ n ) = B n , y ) y Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  39. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ϕ n Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ϕ n ( x n , x ′ ( x n , y ) , ( x ′ n ) = B n , y ) = B , I y L H ( ˜ Y ) y Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  40. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ϕ n ϕ n − 1 Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ϕ n ( x n , x ′ ( x n , y ) , ( x ′ n ) = B n , y ) = B , I y L H ( ˜ Y ) y � � � � ˆ x n − 1 , x ′ x ′ n , x ′ ϕ ( x n , x ′ � � � ϕ n − 1 = U n − 1 ( x n , x n − 1 ) , n ) n − 1 n − 1 x n , x ′ n Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  41. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ϕ n ϕ n − 1 Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ϕ n ( x n , x ′ ( x n , y ) , ( x ′ n ) = B n , y ) = B , I y L H ( ˜ Y ) y � � � � � � ˆ ˆ x n − 1 , x ′ x ′ n , x ′ ϕ ( x n , x ′ � � � ϕ n − 1 = U n − 1 ( x n , x n − 1 ) , n ) = U n , ϕ n n − 1 n − 1 L H ( ˜ X n ) x n , x ′ n Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  42. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ϕ n ϕ n − 1 ϕ 1 Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ϕ n ( x n , x ′ ( x n , y ) , ( x ′ n ) = B n , y ) = B , I y L H ( ˜ Y ) y � � � � � � ˆ ˆ x n − 1 , x ′ x ′ n , x ′ ϕ ( x n , x ′ � � � ϕ n − 1 = U n − 1 ( x n , x n − 1 ) , n ) = U n , ϕ n n − 1 n − 1 L H ( ˜ X n ) x n , x ′ n � � � ˆ ( x 2 , x 1 ) , ( x ′ 2 , x ′ ϕ 2 ( x 2 , x ′ ϕ 1 = U 2 1 ) 2 ) x 2 , x ′ 2 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  43. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ϕ n ϕ n − 1 ϕ 1 Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ϕ n ( x n , x ′ ( x n , y ) , ( x ′ n ) = B n , y ) = B , I y L H ( ˜ Y ) y � � � � � � ˆ ˆ x n − 1 , x ′ x ′ n , x ′ ϕ ( x n , x ′ � � � ϕ n − 1 = U n − 1 ( x n , x n − 1 ) , n ) = U n , ϕ n n − 1 n − 1 L H ( ˜ X n ) x n , x ′ n � � � � � ˆ ( x 2 , x 1 ) , ( x ′ 2 , x ′ ϕ 2 ( x 2 , x ′ ˆ ϕ 1 = U 2 1 ) 2 ) = U 2 , ϕ 2 L H ( ˜ X 2 ) x 2 , x ′ 2 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  44. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ϕ n ϕ n − 1 ϕ 1 ϕ 0 Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ϕ n ( x n , x ′ ( x n , y ) , ( x ′ n ) = B n , y ) = B , I y L H ( ˜ Y ) y � � � � � � ˆ ˆ x n − 1 , x ′ x ′ n , x ′ ϕ ( x n , x ′ � � � ϕ n − 1 = U n − 1 ( x n , x n − 1 ) , n ) = U n , ϕ n n − 1 n − 1 L H ( ˜ X n ) x n , x ′ n � � � � � ˆ ( x 2 , x 1 ) , ( x ′ 2 , x ′ ϕ 2 ( x 2 , x ′ ˆ ϕ 1 = U 2 1 ) 2 ) = U 2 , ϕ 2 L H ( ˜ X 2 ) x 2 , x ′ 2 � � � ˆ ( x 1 , x ) , ( x ′ 1 , x ′ ) ϕ 1 ( x 1 , x ′ ϕ 0 = U 1 1 ) x 1 , x ′ 1 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  45. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ϕ n ϕ n − 1 ϕ 1 ϕ 0 Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ϕ n ( x n , x ′ ( x n , y ) , ( x ′ n ) = B n , y ) = B , I y L H ( ˜ Y ) y � � � � � � ˆ ˆ x n − 1 , x ′ x ′ n , x ′ ϕ ( x n , x ′ � � � ϕ n − 1 = U n − 1 ( x n , x n − 1 ) , n ) = U n , ϕ n n − 1 n − 1 L H ( ˜ X n ) x n , x ′ n � � � � � ˆ ( x 2 , x 1 ) , ( x ′ 2 , x ′ ϕ 2 ( x 2 , x ′ ˆ ϕ 1 = U 2 1 ) 2 ) = U 2 , ϕ 2 L H ( ˜ X 2 ) x 2 , x ′ 2 � � � � � ˆ ( x 1 , x ) , ( x ′ 1 , x ′ ) ϕ 1 ( x 1 , x ′ ˆ ϕ 0 = U 1 1 ) = U 1 , ϕ 1 L H ( ˜ X 1 ) x 1 , x ′ 1 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  46. Quantum Factor Graphs Several Examples Example 1 ˜ X 1 X n X Y Y · · · X ′ X ′ X ′ ˜ Y ′ 1 n ˆ ˆ ˆ ˆ U 1 U 2 U n B diag ( p ( x )) I y ϕ n ϕ n − 1 ϕ 1 ϕ 0 Unitary Evolution over time in n steps followed by a single projective measure � � � � � ˆ ˆ ϕ n ( x n , x ′ ( x n , y ) , ( x ′ n ) = B n , y ) = B , I y L H ( ˜ Y ) y � � � � � � ˆ ˆ x n − 1 , x ′ x ′ n , x ′ ϕ ( x n , x ′ � � � ϕ n − 1 = U n − 1 ( x n , x n − 1 ) , n ) = U n , ϕ n n − 1 n − 1 L H ( ˜ X n ) x n , x ′ n � � � � � ˆ ( x 2 , x 1 ) , ( x ′ 2 , x ′ ϕ 2 ( x 2 , x ′ ˆ ϕ 1 = U 2 1 ) 2 ) = U 2 , ϕ 2 L H ( ˜ X 2 ) x 2 , x ′ 2 � � � � � ˆ ( x 1 , x ) , ( x ′ 1 , x ′ ) ϕ 1 ( x 1 , x ′ ˆ ϕ 0 = U 1 1 ) = U 1 , ϕ 1 L H ( ˜ X 1 ) x 1 , x ′ 1 Heisenberg representation. Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 9

  47. Quantum Factor Graphs Several Examples Example 2 Y 1 Y 2 ˜ ˜ X 0 X 1 X 1 X 2 X 2 X ′ X ′ ˜ X ′ ˜ X ′ X ′ 0 1 2 1 2 ˆ ˆ ˆ ˆ I diag ( p ( x 0 )) U 0 A 1 U 1 A 2 A Two-Measurement Quantum System Here, we assume � � � � ˆ x k , x ′ = δ ( x k , x ′ A k (˜ x k , x k ) , (˜ k ) k ) y k x k Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 10

  48. Quantum Factor Graphs Several Examples Example 2 Y 1 Y 2 ˜ ˜ X 0 X 1 X 1 X 2 X 2 X ′ X ′ ˜ X ′ ˜ X ′ X ′ 0 1 2 1 2 ˆ ˆ ˆ ˆ I diag ( p ( x 0 )) U 0 A 1 U 1 A 2 A Two-Measurement Quantum System Here, we assume � � � � ˆ x k , x ′ = δ ( x k , x ′ A k (˜ x k , x k ) , (˜ k ) k ) y k x k � � � A y k ˆ or, equivalently k , δ ˆ X ) = δ X k , X ′ X k , ˆ X ′ L H ( ˆ k k y k Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 10

  49. Quantum Factor Graphs Several Examples Example 2 Y 1 Y 2 ˜ ˜ X 0 X 1 X 1 X 2 X 2 X ′ X ′ ˜ X ′ ˜ X ′ X ′ 0 1 2 1 2 ˆ ˆ ˆ ˆ I diag ( p ( x 0 )) U 0 A 1 U 1 A 2 A Two-Measurement Quantum System Here, we assume � � � � ˆ x k , x ′ = δ ( x k , x ′ A k (˜ x k , x k ) , (˜ k ) k ) y k x k � � � A y k ˆ or, equivalently k , δ ˆ X ) = δ X k , X ′ X k , ˆ X ′ L H ( ˆ k k y k Y k A special example: I y k ˆ ˆ B H B k k Projective Measurement with 1-dim Eigenspaces Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 10

  50. Quantum Factor Graphs Several Examples Example 3 Y 1 Y 2 ˜ ˜ X 1 X 1 X 2 X 2 ˆ ˆ A 1 A 2 X 0 X 3 X ′ ˜ X ′ ˜ X ′ X ′ 1 2 1 2 W 1 W 2 X ′ X ′ 0 3 I W ′ W ′ diag ( p ( x 0 )) 1 2 ˆ ˆ ˆ U 0 U 1 U 2 A Quantum System with partial measurement Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 11

  51. Quantum Factor Graphs Several Examples Example 3 Y 1 Y 2 ˜ ˜ X 1 X 1 X 2 X 2 ˆ ˆ A 1 A 2 X 0 X 3 X ′ ˜ X ′ ˜ X ′ X ′ 1 2 1 2 W 1 W 2 X ′ X ′ 0 3 I W ′ W ′ diag ( p ( x 0 )) 1 2 ˆ ˆ ˆ U 0 U 1 U 2 A Quantum System with partial measurement X 0 = X 1 × W 1 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 11

  52. Quantum Factor Graphs Several Examples Example 3 Y 1 Y 2 ˜ ˜ X 1 X 1 X 2 X 2 ˆ ˆ A 1 A 2 X 0 X 3 X ′ ˜ X ′ ˜ X ′ X ′ 1 2 1 2 W 1 W 2 X ′ X ′ 0 3 I W ′ W ′ diag ( p ( x 0 )) 1 2 ˆ ˆ ˆ U 0 U 1 U 2 A Quantum System with partial measurement X 0 = X 1 × W 1 This QFG contains cycles. Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 11

  53. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Outline Classical Factor Graphs 1 Modeling “Closing-the-box” Operation Quantum Factor Graphs 2 A Motivating Example Quantum Factor Graph Construction of a QNFG Several Examples Problem of Calculating the Partition Sum 3 Sum-Product / Belief Propagation Algorithm Exploration on Variational Approach End Matters 4 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  54. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm for Acyclic Factor Graphs Target: Calculate Z ( G ) � � g ( x ) x a x 4 x 5 c b x 1 x 2 x 3 e d f Sum-Product Algorithm on a normal factor graph with no cycles Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  55. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm for Acyclic Factor Graphs Target: Calculate Z ( G ) � � g ( x ) x a f bd ( x 4 ) = � f b ( x 1 , x 4 ) f d ( x 1 ) x 4 x 5 x 1 c b 1 x 1 x 2 x 3 e d f Sum-Product Algorithm on a normal factor graph with no cycles Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  56. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm for Acyclic Factor Graphs Target: Calculate Z ( G ) � � g ( x ) x a f bd ( x 4 ) = � f b ( x 1 , x 4 ) f d ( x 1 ) x 4 x 5 x 1 c bd x 2 x 3 e f Sum-Product Algorithm on a normal factor graph with no cycles Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  57. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm for Acyclic Factor Graphs Target: Calculate Z ( G ) � � g ( x ) x a f bd ( x 4 ) = � f b ( x 1 , x 4 ) f d ( x 1 ) x 4 x 5 x 1 c bd 2 f ce ( x 3 , x 5 ) = � f c ( x 2 , x 3 , x 5 ) f e ( x 2 ) x 2 x 3 e f x 2 Sum-Product Algorithm on a normal factor graph with no cycles Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  58. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm for Acyclic Factor Graphs Target: Calculate Z ( G ) � � g ( x ) x a f bd ( x 4 ) = � f b ( x 1 , x 4 ) f d ( x 1 ) x 4 x 5 x 1 ce bd f ce ( x 3 , x 5 ) = � f c ( x 2 , x 3 , x 5 ) f e ( x 2 ) x 3 f x 2 Sum-Product Algorithm on a normal factor graph with no cycles Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  59. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm for Acyclic Factor Graphs Target: Calculate Z ( G ) � � g ( x ) x a f bd ( x 4 ) = � f b ( x 1 , x 4 ) f d ( x 1 ) x 4 x 5 x 1 ce bd 3 f ce ( x 3 , x 5 ) = � f c ( x 2 , x 3 , x 5 ) f e ( x 2 ) x 3 f x 2 f cef ( x 5 ) = � f ce ( x 3 , x 5 ) f f ( x 3 ) Sum-Product Algorithm on a normal factor graph with x 3 no cycles Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  60. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm for Acyclic Factor Graphs Target: Calculate Z ( G ) � � g ( x ) x a f bd ( x 4 ) = � f b ( x 1 , x 4 ) f d ( x 1 ) x 4 x 5 x 1 bd cef f ce ( x 3 , x 5 ) = � f c ( x 2 , x 3 , x 5 ) f e ( x 2 ) x 2 f cef ( x 5 ) = � f ce ( x 3 , x 5 ) f f ( x 3 ) Sum-Product Algorithm on a normal factor graph with x 3 no cycles Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  61. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm for Acyclic Factor Graphs Target: Calculate Z ( G ) � � g ( x ) x a 4 f bd ( x 4 ) = � f b ( x 1 , x 4 ) f d ( x 1 ) x 4 x 5 x 1 bd cef f ce ( x 3 , x 5 ) = � f c ( x 2 , x 3 , x 5 ) f e ( x 2 ) x 2 f cef ( x 5 ) = � f ce ( x 3 , x 5 ) f f ( x 3 ) Sum-Product Algorithm on a normal factor graph with x 3 no cycles f abd ( x 5 ) = � f a ( x 4 , x 5 ) f bd ( x 4 ) x 4 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  62. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm for Acyclic Factor Graphs Target: Calculate Z ( G ) � � g ( x ) x abd f bd ( x 4 ) = � f b ( x 1 , x 4 ) f d ( x 1 ) x 5 x 1 cef f ce ( x 3 , x 5 ) = � f c ( x 2 , x 3 , x 5 ) f e ( x 2 ) x 2 f cef ( x 5 ) = � f ce ( x 3 , x 5 ) f f ( x 3 ) Sum-Product Algorithm on a normal factor graph with x 3 no cycles f abd ( x 5 ) = � f a ( x 4 , x 5 ) f bd ( x 4 ) x 4 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  63. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm for Acyclic Factor Graphs Target: Calculate Z ( G ) � � g ( x ) x abd 5 f bd ( x 4 ) = � f b ( x 1 , x 4 ) f d ( x 1 ) x 5 x 1 cef f ce ( x 3 , x 5 ) = � f c ( x 2 , x 3 , x 5 ) f e ( x 2 ) x 2 f cef ( x 5 ) = � f ce ( x 3 , x 5 ) f f ( x 3 ) Sum-Product Algorithm on a normal factor graph with x 3 no cycles f abd ( x 5 ) = � f a ( x 4 , x 5 ) f bd ( x 4 ) x 4 Z = f abcdef = � f abd ( x 5 ) f cef ( x 5 ) x 5 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  64. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm for Acyclic Factor Graphs Target: Calculate Z ( G ) � � g ( x ) x abcdef f bd ( x 4 ) = � f b ( x 1 , x 4 ) f d ( x 1 ) x 1 f ce ( x 3 , x 5 ) = � f c ( x 2 , x 3 , x 5 ) f e ( x 2 ) x 2 f cef ( x 5 ) = � f ce ( x 3 , x 5 ) f f ( x 3 ) Sum-Product Algorithm on a normal factor graph with x 3 no cycles f abd ( x 5 ) = � f a ( x 4 , x 5 ) f bd ( x 4 ) x 4 Z = f abcdef = � f abd ( x 5 ) f cef ( x 5 ) x 5 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  65. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm for Acyclic Factor Graphs Target: Calculate Z ( G ) � � g ( x ) x a = � f b , f d � x 1 f bd x 4 x 5 c b f ce = � f c , f e � x 2 x 1 x 2 x 3 e d f f cef = � f ce , f f � x 3 Sum-Product Algorithm on a normal factor graph with no cycles f abd = � f a , f bd � x 4 Z = f abcdef = � f abd , f cef � x 5 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  66. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm for Acyclic Factor Graphs Target: Calculate Z ( G ) � � x , x ′ g ( x , x ′ ) a x ′ x ′ 4 5 = � f b , f d � L H ( X 1 ) f bd x 4 x 5 c b x ′ x ′ x ′ 1 2 3 f ce = � f c , f e � L H ( X 2 ) x 1 x 2 x 3 e d f f cef = � f ce , f f � L H ( X 3 ) Sum-Product Algorithm on a quantum normal factor graph with no cycles f abd = � f a , f bd � L H ( X 4 ) Z = f abcdef = � f abd , f cef � L H ( X 5 ) Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 12

  67. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm: General Rules More generally, we are applying following two rules: a m i → a PSD i m a 1 → i m a 2 → i PSD PSD a 1 a 2 � m b → i ( x i , x ′ m i → a ← i ) b ∈ ∂ i \{ a } Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 13

  68. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm: General Rules More generally, we are applying following two rules: a i m i → a m a → i PSD PSD i a m a 1 → i m a 2 → i m i 1 → a m i 2 → a PSD PSD PSD PSD a 1 a 2 i 1 i 2 � � � m b → i ( x i , x ′ � m i → a ← i ) m a → i ← m j → a , f a b ∈ ∂ i \{ a } j ∈ ∂ a \{ i } ∂ a \{ i } Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 13

  69. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Sum-Product Algorithm: General Rules More generally, we are applying following two rules: a i m i → a m a → i PSD PSD i a m a 1 → i m a 2 → i m i 1 → a m i 2 → a PSD PSD PSD PSD a 1 a 2 i 1 i 2 � � � m b → i ( x i , x ′ � m i → a ← i ) m a → i ← m j → a , f a b ∈ ∂ i \{ a } j ∈ ∂ a \{ i } ∂ a \{ i } with initialization at the leaf factors m a → i ( x i , x ′ i ) = f a ( x i , x ′ i ) where { i } = ∂ a Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 13

  70. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm For general QFGs with cycles Definition 2 (General Sum-Product / Belief Propagation Algorithm for QFG) For a general QFG G = {F , V , E} with global funciton g ( x , x ′ ) = � f a ( x ∂ a , x ′ � h i ( x i , x ′ ∂ a ) i ) . (1) a ∈F i ∈V Update rules for belief propagation (BP) algorithm: � � m ( t +1) � m ( t ) ∝ j → a , f a (2) a → i j ∈ ∂ a \{ i } L h ( X ∂ a \{ i } ) m ( t +1) m ( t ) � i → a ∝ h i · (3) b → i b ∈ ∂ i \{ a } The messages are said to be fixed-point messages when above equations holds without time-stamp superscripts. Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 14

  71. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm For general QFGs with cycles Definition 2 (General Sum-Product / Belief Propagation Algorithm for QFG) For a general QFG G = {F , V , E} with global funciton g ( x , x ′ ) = � f a ( x ∂ a , x ′ � h i ( x i , x ′ ∂ a ) i ) . (1) a ∈F i ∈V Update rules for belief propagation (BP) algorithm: � � � m a → i ∝ m j → a , f a (2) j ∈ ∂ a \{ i } L h ( X ∂ a \{ i } ) � m i → a ∝ h i · m b → i (3) b ∈ ∂ i \{ a } The messages are said to be fixed-point messages when above equations holds without time-stamp superscripts. Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 14

  72. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Loop Calculus for SP / BP Algorithms Theorem 3 ( Loop Calculus [Chertkov and Chernyak, 2006, Mori, 2015a, Mori, 2015b]) At BP-fixed point, we have �� � � � � � Z � = Z Bethe 1 + K ( E ) f a , h i a ∈F i ∈V E ⊂E ′ L ( X V ) where the extended loop set is defined as E ′ � { E ⊂ E\ { φ } : d i ( E ) � = 1 ∀ i ∈ V , d a ( E ) � = 1 ∀ i ∈ F} where K ( E ) is some function depending on E, and K ( φ ) = 1 , and � � � � � � m ( t ) m ( t ) � � � h i , � Z a Z i i → a , f a a → i a ∈F i ∈V a ∈F i ∈ ∂ a i ∈V a ∈ ∂ i Z Bethe � = . � � Z i , a � m a → i , m i → a � ( i , a ) ∈E ( i , a ) ∈E Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 15

  73. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Loop Calculus for BP Algorithms Interpretation Bethe Approximation is exact for acyclic QFG; Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 15

  74. Problem of Calculating the Partition Sum Sum-Product / Belief Propagation Algorithm Loop Calculus for BP Algorithms Interpretation Bethe Approximation is exact for acyclic QFG; Bethe Approximation is close to the exact value for QFGs with small number of cycles. Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 15

  75. Problem of Calculating the Partition Sum Exploration on Variational Approach Outline Classical Factor Graphs 1 Modeling “Closing-the-box” Operation Quantum Factor Graphs 2 A Motivating Example Quantum Factor Graph Construction of a QNFG Several Examples Problem of Calculating the Partition Sum 3 Sum-Product / Belief Propagation Algorithm Exploration on Variational Approach End Matters 4 Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 16

  76. Problem of Calculating the Partition Sum Exploration on Variational Approach Variational Approach for Classic Factor Graphs Target: Calculate Z ( G ) � � g ( x ), where g ( x ) = � f a ( x a ) � h i ( x i ) x a ∈F i ∈V I: Calculate F H � − ln Z ( G ); Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 16

  77. Problem of Calculating the Partition Sum Exploration on Variational Approach Variational Approach for Classic Factor Graphs Target: Calculate Z ( G ) � � g ( x ), where g ( x ) = � f a ( x a ) � h i ( x i ) x a ∈F i ∈V I: Calculate F H � − ln Z ( G ); II: Minimize F Gibbs ( b ) over all possible global probability function b ( x ); � � b is a probability function F Gibbs ( b ) � − min b ( x ) ln f a ( x ∂ a ) a ∈F x � � − b ( x ) ln h i ( x i ) i ∈V x � + b ( x ) ln b ( x ) x = F H + D ( b � p ) � F H . Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 16

  78. Problem of Calculating the Partition Sum Exploration on Variational Approach Variational Approach for Classic Factor Graphs Target: Calculate Z ( G ) � � g ( x ), where g ( x ) = � f a ( x a ) � h i ( x i ) x a ∈F i ∈V I: Calculate F H � − ln Z ( G ); II: Minimize F Gibbs ( b ) over all possible global probability function b ( x ); � � III: Minimize F Bethe { b a } a ∈F , { b i } i ∈V over all valid marginal probability functions { b a } a ∈F , { b i } i ∈V ; � � � � � � � − ( b a ) a ∈F , ( b i ) i ∈V b a ( x ∂ a ) ln f a ( x ∂ a ) − b i ( x i ) ln h i ( x i ) F Bethe a ∈F x ∂ a i ∈V x i � � + b a ( x ∂ a ) ln b a ( x ∂ a ) a ∈F x ∂ a � � − ( d i − 1) b i ( x i ) ln b i ( x i ) i ∈V x i = F Gibbs for acyclic factor graphs. Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 16

  79. Problem of Calculating the Partition Sum Exploration on Variational Approach Variational Approach for Classic Factor Graphs Target: Calculate Z ( G ) � � g ( x ), where g ( x ) = � f a ( x a ) � h i ( x i ) x a ∈F i ∈V I: Calculate F H � − ln Z ( G ); II: Minimize F Gibbs ( b ) over all possible global probability function b ( x ); � � III: Minimize F Bethe { b a } a ∈F , { b i } i ∈V over all valid marginal probability functions { b a } a ∈F , { b i } i ∈V ; IV: Study the Stationary Condition of above optimization problem, which turned out to be equivalent to � � min ( b a ) a ∈F , ( b i ) i ∈V b a , b i probability functions F Bethe � s . t . b a ( x a ) = b i ( x i ) ∀ ( i , a ) ∈ E , ∀ x i ∈ X i x ∂ a \{ i } Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 16

  80. Problem of Calculating the Partition Sum Exploration on Variational Approach Variational Approach for Classic Factor Graphs Target: Calculate Z ( G ) � � g ( x ), where g ( x ) = � f a ( x a ) � h i ( x i ) x a ∈F i ∈V I: Calculate F H � − ln Z ( G ); II: Minimize F Gibbs ( b ) over all possible global probability function b ( x ); � � III: Minimize F Bethe { b a } a ∈F , { b i } i ∈V over all valid marginal probability functions { b a } a ∈F , { b i } i ∈V ; IV: Study the Stationary Condition of above optimization problem, which turned out to be equivalent to � b a ∝ f a · m i → a i ∈ ∂ a � b i ∝ h 1 · m a → i a ∈ ∂ i � b a ( x a ) = b i ( x i ) ∀ ( i , a ) ∈ E , ∀ x i ∈ X i x ∂ a \{ i } Michael X. CAO (IE@CUHK) Quantum Factor Graph September 25, 2015 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend