gamma rays
play

Gamma Rays from Star Forming Galaxies and Dark Matter Non-Thermal - PowerPoint PPT Presentation

Massimo Persic INAF+INFN Trieste Gamma Rays from Star Forming Galaxies and Dark Matter Non-Thermal plasma: T ion electron f( v ) of either species non-Maxwell Boltzmann Particle Acceleration Radiation Processes synchrotron bremsstrahlung


  1. Massimo Persic INAF+INFN Trieste Gamma Rays from Star Forming Galaxies and Dark Matter

  2. Non-Thermal plasma: T ion electron f( v ) of either species non-Maxwell Boltzmann Particle Acceleration

  3. Radiation Processes synchrotron bremsstrahlung Inverse Compton

  4. 4

  5. Diffusion-Loss Equation energy gains / losses diffusion

  6. energy gains / losses diffusion rate of particles production per unit volume of coord space by definition: energy loss for particles of energy E

  7. Energy loss processes: protons l Ionization losses 10 -14 n p (1- 2 ) -1/2 [10.9 + 2 ln -2 ) + (1- -2 )] s -1 p + ln (1- d p p p p 5 10 -15 n p [26.73 + 3 ln( p )] s -1 p > 2000 l Pion production d p 3.7 10 -13 n p ( p -1) p > 2.38 (  1.22 GeV) p -1)m p c 2 (

  8. Energy loss processes: electrons b ( ) = b Coul ( ) + b syn ( ) + b IC ( ) + b brem ( ) + b AW ( ) l Coulomb interactions with thermal electrons l synchrotron radiation l Inverse Compton (IC) scattering … for U r =4 10 -13 erg cm -3 r l bremsstahlung radiation l Scattering by Alfvèn waves ) -1/2 /L = 3 10 -16 (B/ G) n e (L/0.3 kpc) -1 s -1 b AW = - B (4

  9. Coulomb IC Starburst galaxy: n e = 100 cm -3 AW B = 100 G z = 0 Brems Synchrotron Galaxy cluster: n e = 10 -3 cm -3 B = 1 G z = 0

  10. n e =10 -4 , B=1 G hjffyfkyfky Cooling time: t loss = / b ( )

  11. MP, Rephaeli & Arieli 2008, A&A, 486, 143 HE Gamma Rays in Galaxies Rephaeli, Arieli & MP 2010, MNRAS, 401, 473 MP & Rephaeli 2010, MNRAS, 403, 1569 l electron spectrum q N e ( ) = N e,0 l synchr. emissivity 3 /d 2 ) N e,0 a(q) B (q+1)/2 ( /4 10 +6 ) (q 1)/2 erg/(s cm 2 Hz) F = 5.67 10 (r s l electron spectrum: normalization, energy density l particle/field energy density equipartition

  12. l p/e energy density ratio = T 0 = few keV l p/e ratio  q =2.3  U p /U e 15 N p /N e | >>1GeV l equipartition magnetic field B 2 l CRp energy density U p = 8 (1+ ) primary/secondari electron ratio ~ 0.5

  13. Persic, Rephaeli & Arieli 2008 M82 d=3.6 Mpc A&A, 486, 143 r(SB)= 0.3 kpc f 1GHz = 10 Jy Klein+ 1988 SN ~ 0.3 yr erg s  SFR ~10 M yr L m =

  14. (… M82 cont’d) Drury+ 1994 VHE -ray emission SB nucleus : r 0.3 kpc M H2 = M U p = 200 eV cm L >100GeV = s  F >100GeV = cm s External disk: r>0.3 kpc (R) = (0) e R/R d Gas: flat, thin, exponential disk: M g = M (0) = 7.5E+22 cm -2 U p = ( R/R SB ) R d = 0.82 kpc s  F >100GeV = L >100GeV = cm s Total flux: F >100GeV = 1.1 10 -11 cm s

  15. (… M82 cont’d) numerical treatment loss-propagation model … same structure parameters CR/field energy equip. p/e theoretically assumed injection part. spectrum: q=2 ... interactively  N e ~ 10 cm N p /N e ( >>1 GeV ) ~ 50, B 0 ~ 180 G protons electrons F >100MeV = E-8 cm -2 s -1 F >100GeV = 2.5E-12 cm -2 s -1 ≥ 1/2 sens. of MAGIC-II, VERITAS

  16. (… M82 cont’d) M82 detection Physics Today January 2010

  17. NGC 253 Rephaeli, Arieli & Persic 2010, MNRAS, 401, 473 protons total total nucleus electrons differential total spectrum integral spectrum 0 decay IC bremsstr

  18. (… NGC253 cont’d) NGC 253 detection U p ~ 150 eV cm -3 in SB nucleus

  19. 2. U p from M31 (Andromeda Galaxy) Abdo et al. (LAT Collab.) -rays 2010, A&A, 523, L2 MW model, scaled U p ~ 0.36 eV cm 3

  20. Large Magellanic Cloud (LMC) MW Abdo et al. (LAT Collab.) HI 2010, A&A, 512, 7 H 2 U p ~ 0.2-0.3 eV cm 3

  21. Abdo et al. (LAT Collab.) Small Magellanic Cloud (SMC) 2010, A&A, 523, A46 U p ~ 0.15 eV cm 3

  22. 3 SN / r s Adapted from: l Abdo et al. (LAT Collab.) 2010, ApJL, 709, L152; l Physics Today (Jan. 2010) ~ const, M H galaxy-wide M82 NGC253 MW | | l M31 LMC SMC | l l

  23. Kennicutt 1998 ARAA, 36, 189 Bigiel + 2008 2.5 AJ, 136, 2846 1.4 2.5 1.4 Schmidt-Kennicutt SF law: SFR HI+H 2 ~ 2.5  L SN M H Abdo et al. (LAT Collab.) SFR M H 2010, A&A, 523, L2 SFR (1+1/ SFR 1.4

  24. Measuring CR energy densities ( U p ) in galaxies  U p from -ray emission: . = E/E = ( E/E) -1 t = -1 t ~ 10 5 yr Lifetime for energy gain: Residency lifetime: = out + pp M82: out = 3 10 4 yr M82: pp = 2 10 5 yr Starburst lifetime: SB ~ dyn ~ 10 8 yr ~ 10 5 yr << SB ~ Balance of gains vs losses achieved during SB Equilibrium: min-energy confuguration  CR vs B equipartition p/e ratio   U p from ( radio synchrotron em. of ) CRe  U p from SN rate & residency time: U p SN

  25. Arp 220  U p 475 eV cm 3 radio NGC 253  125 radio, M 82  111 radio, Milky Way  1 … M31  0.35 LMC  0.25 SMC  0.15 U p from supernovae v massive star formation  SN v SNR  Fermi-I mechanism  CR v CR – SN relation ( Ginzburg & Syrovatskii 1964 ) 3 U p ~ ¼ ( SN ) ( E ej ) r s

  26. Arp 220  U p 476 eV cm 3 NGC 253  125 particle SN rate SB radius accel. eff. M 82  111 Milky Way  1 3 U p ~ ¼ ( SN ) ( E ej ) r s M31  0.35 LMC  0.25 protons ’ SMC  0.15 lifetime kin. energy of SN ejecta ~ 2 10 7 n p yr pp collisions pp cn p advection 3 10 4 (r s /0.3 kpc) (v out /2500 km s ) yr 9.0E+3 yr adv Arp 220 515 eV cm -3 3.50 yr -1 0.25 kpc 2.0E+4 yr adv NGC 253 77 eV cm -3 0.12 yr -1 0.20 kpc 2.6E+3 yr adv 95 eV cm -3 M 82 0.25 yr -1 0.26 kpc V<sv 5.0E+6 yr pp 1.8 eV cm -3 MW 0.02 yr -1 2.4 kpc 2.0E+7 yr pp <bhsrs M31 0.7 eV cm -3 0.01 yr -1 4.2 kpc 1.0E+7 yr pp LMC 0.2 eV cm -3 2 E-3 yr -1 3.0 kpc Sngoug 4.0E+7 yr pp SMC 1.0 eV cm -3 1 E-3 yr -1 2.1 kpc n if CRp advected by diffusion v diff =100 km/s  U p =0.15 eV/cm 3

  27. CONCLUSIONS on CRs U p can be measured from: i) -ray emission (directly) ii) radio synchrotron emission (indirectly) , assuming p/e ratio, part./field equilibrium. iii) SN rates and CRp lifetimes. Starbursts: U p ~ O(100) eV cm -3 Quiet SFGs: U p ~ O(1) eV cm -3 Universal(?) acceleration efficiency of SN. Fermi I acceleration at work (NR strong shock) . Particles/field equipartition in place.  radio data to study CRs in high-z SFGs Happy ending?

  28. Targets for DM search Requirements: 1. Not associated with known conventional TeV sources 2. High DM density 3. Close by 4. Not extended 1. Galactic Center Distance ~ 7.5 kpc  OK ... but: other -ray sources in the FOV, i.e. SNR Sgr A East  plausible competing scenarios 2. Dwarf Sph galaxies ok 1(?), 2, 3, 4

  29. 1. The Galactic Center 1. The Galactic Center >1 TeV VLA Sgr A MAGIC no variability, Gal. Eq. yr-min scale Detected: Cangaroo 2003 Confirmed: HESS 2004 Confirmed: MAGIC 2005 consistent with Sgr A* to 6’’ Diffuse GP emission revealed and slightly extended by subtracting strong sources Correlation with molecular gas MAGIC vs HESS CRs interacting with MCs agreement ! GC source coincident w. Sgr A* Subtracted image slope = 2.2 Contours of CS emission (molecular tracer) GC signal: GC signal: unlikely unlikely to be DM to be DM

  30. Some background on galaxy structure .. I(r) = I 0 exp(-r/R d ) same profile at all luminosities!

  31. Rotation curves are not self-similar with luminosity!

  32. Smooth progression of RC shape, and disk/halo interplay, with luminosity lkugkfthjfftrd blablablablabla

  33. Tully-Fisher relation R/R opt when DM starts to be dynamically felt

  34. Whence these properties? • Bottom-up • Baryon infall: SF  SN expl.  winds  cosmology: small most of infalling galaxies formed baryons lost in small first, hence their gals., but retained in density retains the bigger ones. cosmological density at the epch • Smaller, denser gals. of their turnaround have little/no SF – ( 1.8). bigger, less dense gals. do have gas and SF.

  35. Small, nearby galaxies … or … large, faraway clusters? Let’s start from signal from self-interacting DM decay D -2  small distances best!  small guys win!  cosmology: dSph halos are best candidates for DM signal  astrophysics: dSph stellar pops . are most silent astroph bkgd

  36.  Dwarf Spheroidals: ideal DM candidates Milky Way satellites  nearby High M/L  DM dominated Old stellar pop.  no ongoing SF u

  37. Bergström & Example: Draco dSph modeling d~80 kpc Hooper 2006 total DM A v>, m : WIMP annihil. cross section, mass annihil. rate N : -rays / annihil. - ray flux cusped upper limit profile cored profile -ray flux r s = 7 – 0.2 kpc 0 = 10 7 – 10 9 M  kpc -3 part. phys 2 r s 3 = 0.03 – 6 M  2 kpc -3 astrophys 0

  38. _ bb + - t t _ min. cored W + W - max. cusped ZZ MAGIC Fermi LAT Bergström & Hooper 2006 40-h exp. 1-yr exp. IACT neutralino detection: < A v> 10 -25 cm 3 s -1 Stoehr + 2003

  39. Draco dSph obs’d MAGIC Albert et al. 2008

  40. Segue-1 galaxy

  41. Wilman-I

  42. Summary Galaxies can produce VHE -rays, related to ongoing SF and DM decay SF: emission detected from nearby starburst (M82, NGC253), quiescent (M31, LMC, SMC), and SB/Seyfert-I (NGC1068, NGC4945) galaxies. CR energy densities: measured directly from -emission and indirectly from radio emission, estimated from SR frequencies  results agree. DM: no signal from MW center and from (best candidate) MW satellite dSph galaxies.  hunt ongoing ...

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend