gadgets and anti gadgets leading to a complexity dichotomy
play

Gadgets and Anti-Gadgets Leading to a Complexity Dichotomy Tyson - PowerPoint PPT Presentation

Gadgets and Anti-Gadgets Leading to a Complexity Dichotomy Tyson Williams University of Wisconsin-Madison Joint with: Jin-Yi Cai (University of Wisconsin-Madison) Michael Kowalczyk (Northern Michigan University) To appear at ITCS 2012 Tyson


  1. Gadgets and Anti-Gadgets Leading to a Complexity Dichotomy Tyson Williams University of Wisconsin-Madison Joint with: Jin-Yi Cai (University of Wisconsin-Madison) Michael Kowalczyk (Northern Michigan University) To appear at ITCS 2012 Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 1 / 19

  2. # VertexCover Definition A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set. Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 2 / 19

  3. # VertexCover Definition A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set. Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 2 / 19

  4. # VertexCover Definition A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set. Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 2 / 19

  5. # VertexCover Definition A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set. X � � � Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 2 / 19

  6. Systematic Approach to # VertexCover G = ( V, E ) � OR( σ ( u ) , σ ( v )) = 1 · 1 · 1 · 1 · 1 · 1 = 1 ( u,v ) ∈ E Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 3 / 19

  7. Systematic Approach to # VertexCover G = ( V, E ) � OR( σ ( u ) , σ ( v )) = 1 · 1 · 1 · 1 · 1 · 1 = 1 ( u,v ) ∈ E Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 3 / 19

  8. Systematic Approach to # VertexCover 0 G = ( V, E ) σ : V → { 0 , 1 } 1 1 1 � OR( σ ( u ) , σ ( v )) = 1 · 1 · 1 · 1 · 1 · 1 = 1 ( u,v ) ∈ E Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 3 / 19

  9. Systematic Approach to # VertexCover 0 G = ( V, E ) σ : V → { 0 , 1 } OR OR OR 1 OR OR 1 1 OR � OR( σ ( u ) , σ ( v )) = 1 · 1 · 1 · 1 · 1 · 1 = 1 ( u,v ) ∈ E Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 3 / 19

  10. Systematic Approach to # VertexCover 0 G = ( V, E ) σ : V → { 0 , 1 } OR OR OR 1 OR OR 1 1 OR � OR( σ ( u ) , σ ( v )) = 1 · 1 · 1 · 1 · 1 · 1 = 1 ( u,v ) ∈ E Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 3 / 19

  11. Systematic Approach to # VertexCover 0 G = ( V, E ) σ : V → { 0 , 1 } OR OR OR 1 OR OR 1 0 OR � OR( σ ( u ) , σ ( v )) = 1 · 1 · 0 · 1 · 1 · 1 = 0 ( u,v ) ∈ E Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 3 / 19

  12. Systematic Approach to # VertexCover G = ( V, E ) σ : V → { 0 , 1 } � � # VertexCover ( G ) = OR( σ ( u ) , σ ( v )) σ : V →{ 0 , 1 } ( u,v ) ∈ E Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 3 / 19

  13. Generalize � � OR ( σ ( u ) , σ ( v )) σ : V →{ 0 , 1 } ( u,v ) ∈ E Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 4 / 19

  14. Generalize � � OR ( σ ( u ) , σ ( v )) σ : V →{ 0 , 1 } ( u,v ) ∈ E Input Output OR( p, q ) p q 0 0 0 0 1 1 1 0 1 1 1 1 Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 4 / 19

  15. Generalize � � f ( σ ( u ) , σ ( v )) σ : V →{ 0 , 1 } ( u,v ) ∈ E Input Output Input Output OR( p, q ) f ( p, q ) p q p q 0 0 0 0 0 w 0 1 1 0 1 x 1 0 1 1 0 y 1 1 1 1 1 z where w, x, y, z ∈ C Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 4 / 19

  16. Generalize Partition Function: Z ( · ) � � Z ( G ) = f ( σ ( u ) , σ ( v )) σ : V →{ 0 , 1 } ( u,v ) ∈ E Input Output Input Output OR( p, q ) f ( p, q ) p q p q 0 0 0 0 0 w 0 1 1 0 1 x 1 0 1 1 0 y 1 1 1 1 1 z where w, x, y, z ∈ C Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 4 / 19

  17. Main Result Theorem (Dichotomy Theorem) Over 3-regular graphs G , the counting problem for any (binary) complex-weighted function f � � Z ( G ) = f ( σ ( u ) , σ ( v )) σ : V →{ 0 , 1 } ( u,v ) ∈ E is either computable in polynomial time or #P -hard. Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 5 / 19

  18. Main Result Theorem (Dichotomy Theorem) Over 3-regular graphs G , the counting problem for any (binary) complex-weighted function f � � Z ( G ) = f ( σ ( u ) , σ ( v )) σ : V →{ 0 , 1 } ( u,v ) ∈ E is either computable in polynomial time or #P -hard. Furthermore, the complexity is efficiently decidable. Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 5 / 19

  19. Outline 1 Related work 2 Define Holant function 3 Proof sketch Anti-gadgets Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 6 / 19

  20. Related Work: Dichotomy Theorems Symmetric f f (0 , 1) = f (1 , 0) 3-regular graphs with outputs in { 0 , 1 } [Cai, Lu, Xia 08] { 0 , 1 , − 1 } [Kowalczyk 09] R [Cai, Lu, Xia 09] C [Cai, Kowalczyk 10] k -regular graphs with outputs in R [Cai, Kowalczyk 10] C [Cai, Kowalczyk 11] Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 7 / 19

  21. Related Work: Dichotomy Theorems Symmetric f f (0 , 1) = f (1 , 0) 3-regular graphs with outputs in { 0 , 1 } [Cai, Lu, Xia 08] { 0 , 1 , − 1 } [Kowalczyk 09] R [Cai, Lu, Xia 09] C [Cai, Kowalczyk 10] k -regular graphs with outputs in R [Cai, Kowalczyk 10] C [Cai, Kowalczyk 11] This work: Asymmetric f 3-regular graphs with outputs in C Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 7 / 19

  22. Definition of Holant Function Partition Function f f f f f f � � f ( σ ( u ) , σ ( v )) σ : V →{ 0 , 1 } ( u,v ) ∈ E Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 8 / 19

  23. Definition of Holant Function Partition Function Assignments to vertices Functions on edges f f f f f f � � f ( σ ( u ) , σ ( v )) σ : V →{ 0 , 1 } ( u,v ) ∈ E Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 8 / 19

  24. Definition of Holant Function Partition Function Holant Function Assignments to vertices Assignment to edges Functions on edges Functions on vertices f f f f f f � � f ( σ ( u ) , σ ( v )) σ : V →{ 0 , 1 } ( u,v ) ∈ E Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 8 / 19

  25. Definition of Holant Function Partition Function Holant Function Assignments to vertices Assignment to edges Functions on edges Functions on vertices = 3 f f f f f f = 3 f f f f f f = 3 = 3 � � � � � � σ | E ( v ) g v f ( σ ( u ) , σ ( v )) σ : E →{ 0 , 1 } v ∈ V σ : V →{ 0 , 1 } ( u,v ) ∈ E Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 8 / 19

  26. Definition of Holant Function Holant Function Holant( { f }|{ = 3 } ) is a counting problem defined Assignment to edges Functions on vertices over (2,3)-regular bipartite graphs. = 3 f f f = 3 f f f = 3 = 3 � � � � σ | E ( v ) g v σ : E →{ 0 , 1 } v ∈ V Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 8 / 19

  27. Definition of Holant Function Holant Function Holant( { f }|{ = 3 } ) is a counting problem defined Assignment to edges Functions on vertices over (2,3)-regular bipartite graphs. = 3 Degree 2 vertices take f . Degree 3 vertices take = 3 . f f f = 3 f f f = 3 = 3 � � � � σ | E ( v ) g v σ : E →{ 0 , 1 } v ∈ V Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 8 / 19

  28. Example Holant Problems Holant( { OR 2 }|{ = 3 } ) is # VertexCover on 3-regular graphs. Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 9 / 19

  29. Example Holant Problems Holant( { OR 2 }|{ = 3 } ) is # VertexCover on 3-regular graphs. Holant( { NAND 2 }|{ = 3 } ) is # IndependentSet on 3-regular graphs. Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 9 / 19

  30. Example Holant Problems Holant( { OR 2 }|{ = 3 } ) is # VertexCover on 3-regular graphs. Holant( { NAND 2 }|{ = 3 } ) is # IndependentSet on 3-regular graphs. Holant( { = 2 }|{ AT-MOST-ONE } ) is # Matching . Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 9 / 19

  31. Example Holant Problems Holant( { OR 2 }|{ = 3 } ) is # VertexCover on 3-regular graphs. Holant( { NAND 2 }|{ = 3 } ) is # IndependentSet on 3-regular graphs. Holant( { = 2 }|{ AT-MOST-ONE } ) is # Matching . Holant( { = 2 }|{ EXACTLY-ONE } ) is # PerfectMatching . Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 9 / 19

  32. General Bipartite Holant Definition More generally, Holant( G |R ) is a counting problem defined over bipartite graphs. g 1 r 1 g 2 r 2 g 3 r 3 g 4 Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 10 / 19

  33. General Bipartite Holant Definition More generally, Holant( G |R ) is a counting problem defined over bipartite graphs. g 1 r 1 g 2 r 2 g 3 r 3 g 4 � � � � f v σ | E ( v ) v ∈ V σ : E →{ 0 , 1 } Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 10 / 19

  34. Symmetric vs Asymmetric Function Input Output f ( p, q ) p q = 3 0 0 w 0 1 x f 1 0 y 1 1 z f f = 3 f f f = 3 = 3 Tyson Williams (UW-M) Gadgets and Anti-Gadgets MTD 11-13-11 11 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend