fundamentals of computational neuroscience 2e
play

Fundamentals of Computational Neuroscience 2e December 31, 2009 - PowerPoint PPT Presentation

Fundamentals of Computational Neuroscience 2e December 31, 2009 Chapter 8: Recurrent associative networks and episodic memory Memory classification scheme (Squire) Memory Declarative Non-declarative Procedural Perceptual Conditioning


  1. Fundamentals of Computational Neuroscience 2e December 31, 2009 Chapter 8: Recurrent associative networks and episodic memory

  2. Memory classification scheme (Squire) Memory Declarative Non-declarative Procedural Perceptual Conditioning Non-associaitve Episodic Semantic (Events) (Facts) Reflex pathways Neocortex Amygdala Basal ganglia Hippocampus (MTL) Cerebellum Motor cortex Neocortex Cerebellum Basal ganglia

  3. Auto-associative network and hippocampus A. Recurrent associator network B. Schematic diagram of the Hippocampus in r i CA3 DG CA1 w ji out r j SB EC

  4. Point attractor neural network (ANN) Update rule: τ d u i ( t ) = − u i ( t ) + 1 � j w ij r j ( t ) + I ext ( t ) i d t N Activation function r i = g ( u i ) (e.g. threshold functions) Learning rule w ij = ǫ � N p µ = 1 ( r µ i − � r i � )( r µ j − � r j � ) − c i Training patterns: Random binary states with components s µ i ∈ {− 1 , 1 } , r i = 1 2 ( s i + 1 ) Update equations for fixed-point model ( d u i / d t = 0) : �� � s i ( t + 1 ) = sign j w ij s j ( t )

  5. ann cont.m 1 %% Continuous time ANN 2 clear; clf; hold on; 3 nn = 500; dx=1/nn; C=0; 4 5 %% Training weight matrix 6 pat=floor(2*rand(nn,10))-0.5; 7 w=pat*pat’; w=w/w(1,1); w=100*(w-C); 8 %% Update with localised input 9 tall = []; rall = []; 10 I_ext=pat(:,1)+0.5; I_ext(1:10)=1-I_ext(1:10); 11 [t,u]=ode45(’rnn_ode_u’,[0 10],zeros(1,nn),[],nn,dx,w,I_ext); 12 r=u>0.; tall=[tall;t]; rall=[rall;r]; 13 %% Update without input 14 I_ext=zeros(nn,1); 15 [t,u]=ode45(’rnn_ode_u’,[10 20],u(size(u,1),:),[],nn,dx,w,I_ext); 16 r=u>0.; tall=[tall;t]; rall=[rall;r]; 17 %% Plotting results 18 plot(tall,4*(rall-0.5)*pat/nn)

  6. ann fixpoint.m 1 pat=2*floor(2*rand(500,10))-1; % Random binary pattern 2 w=pat*pat’; % Hebbian learning 3 s=rand(500,1)-0.5; % Initialize network 4 for t=2:10; s(:,t)=sign(w*s(:,t-1)); end % Update network 5 plot(s’*pat/500) A. Fixpoint ANN model B. Continuous time ANN model 1 1 Overlap 0.5 Overlap 0.5 0 0 -0.5 -0.5 0 5 10 0 10 20 Iterations Time [ τ ]

  7. Memory breakdown A. Basin of attraction B. Load capacity 0.8 0.05 Distance at t = 1 ms Distance at t = 1 ms 0.7 0.04 0.6 0.5 0.03 0.4 0.02 0.3 0.2 0.01 0.1 0 0 − 0.1 − 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0 0.05 0.1 0.15 0.2 0.25 Initial distance at t = 0 ms Load α

  8. Probabilistic RNN Probabilistic update rule: 1 P ( s i ( t ) = + 1 ) = 1 + exp ( − 2 � j w ij s j ( t − 1 ) / T ) Recovers deterministic rule in lim T → 0 � s i ( t ) = sign ( w ij s j ( t − 1 )) j

  9. Phase diagram Random phase (paramagnetic) Noise level (T) 1.0 Frustrated phase (spin glass) 0.5 Memory phase (ferromagnetic) 0.05 0.1 0.15 Load parameter ( α )

  10. Noisy weights and diluted attractor networks A. Noisy weights B. Diluted weights C. Diluted nodes Distance of remaining nodes 0.35 1 1 0.3 0.8 0.8 0.25 Distance Distance 0.6 0.6 0.2 0.15 0.4 0.4 0.1 0.2 0.2 0.05 0 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Noise strength Dilution probability Fraction of nodes diluted

  11. How to minimize interference between patterns? Associative memory in ANN is strongly influenced by interference between patter due to ◮ correlated patterns ◮ random overlap Storage capacity can be much enhanced through decorrelating patterns. Simplest approach is generating sparse representations with expansion re-coding. k Storage capacity: α c ≈ a ln ( 1 / a ) (Rolls & Treves)

  12. Expansion re-coding (e.g. in dentate gyrus) r out 1 r out 2 r in 1 r out 3 r out in r 4 2 1 r in r in r out r out r out r out − 1 − 1 0.5 1 2 1 2 3 4 1 − 1 − 0.5 0 0 1 0 0 0 1 0 0 1 0 0 − 1 1 − 0.5 0 1 0 0 1 0 1 1 − 1.5 1 1 0 0 0 1

  13. Sparse pattern and inhibition A. Probability density B. Sparse ANN simulation 0.5 P ( h ) 0.4 0.3 a ret 0.2 0.1 0 normalized Hamming distance h ret 0 0.05 0.1 0.15 0.2 - Ca - θ Inhibition constant C

  14. Three nodes with � and � − � coupling (Lorenz attractor): d x i � � w 1 w 2 d t = ij x i + ijk x j x k j jk  � − 1 w 2 0 213 = − 1 a �  w 1 = w 2 = w 2 b − 1 0 and 312 = − 1 0 0 − c 0 otherwise  50 40 30 z 20 10 0 50 0 y 20 10 − 50 0 − 10 − 20 x

  15. Cohen–Grossberg theorem � � b i ( x i ) − � N Dynamical system of the form dx i dt = − a i ( x i ) j = 1 ( w ij g j ( x j )) Has a Lyapunov (Energy) function, which guaranties point attractors, under the conditions that 1. Positivity a i ≥ 0 : The dynamics must be a leaky integrator rather than an amplifying integrator. 2. Symmetry w ij = w ji : The influence of one node on another has to be the same as the reverse influence. 3. Monotonicity sign ( d g ( x ) / d x ) = const : The activation function has to be a monotonic function. → more general dynamics possible with: ◮ Non-symmetric weight matrix ◮ Non-monotone activation functions (tuning curves) ◮ Networks with hidden nodes

  16. Recurrent networks with non-symmetric weights A. Unit components B. Random components C. Hebb--Dale network 10 10 1.5 Average overlap t end = 5 τ t end = 10 τ 5 5 1 t end = 20 τ g a g a 0 0 0.5 − 5 − 5 − 10 − 10 0 − 10 − 5 0 5 10 − 10 − 5 0 5 10 0 0.05 0.1 g s g s Load parameter α → strong asymmetry is necessary to abolish point attractors

  17. Further Readings Daniel J. Amit (1989), Modelling brain function: the world of attractor neural networks , Cambridge University Press. John Hertz, Anders Krogh, and Richard G. Palmer (1991), Introduction to the theory of neural computation , Addison-Wesley. Edmund T. Rolls and Alessandro Treves (1998), Neural networks and brain function , Oxford University Press Eduardo R. Caianello (1961), Outline of a theory of thought-proccess and thinking machines , in Journal of Theoretical Biology 2: 204–235. John J. Hopfield (1982), Neural networks and physical systems with emergent collective computational abilities , in Proc. Nat. Acad. Sci., USA 79: 2554–8. Michael A. Cohen and Steven Grossberg (1983), Absolute stability of global pattern formation and parallel memory storage by competitive neural networks , in IEEE Trans. on Systems, Man and Cybernetics , SMC-13: 815–26. MWenlian Lu and Tianping Chen, New Conditions on Global Stability of Cohen-Grossberg Neural Networks , in Neural Computation , 15: 1173–1189. Masahiko Morita (1993), Associative memory with nonmonotone dynamics , in Neural Networks 6: 115–26. Michael E. Hasselmo and Christiane Linster (1999), Neuromodulation and memory function , in Beyond neurotransmission: neuromodulation and its importance for information processing , Paul S. Katz (ed.), Oxford University Press. Pablo Alvarez and Larry R. Squire (1991), Memory consolidation and the medial temporal lobe: a simple network model , in Proc Natl Acad Sci 15: 7041-7045.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend