functional stein s
play

Functional Steins Institut method Mines-Telecom L. Decreusefond - PowerPoint PPT Presentation

Functional Steins Institut method Mines-Telecom L. Decreusefond Borchard symposium Roadmap Probability Optimal Types Transportation metrics Rubinstein Wasserstein Entropy Prohorov 2/39 Institut Mines-Telecom Functional Steins


  1. Functional Stein’s Institut method Mines-Telecom L. Decreusefond Borchard symposium

  2. Roadmap Probability Optimal Types Transportation metrics Rubinstein Wasserstein Entropy Prohorov 2/39 Institut Mines-Telecom Functional Stein’s method

  3. Roadmap Probability Optimal Types Transportation metrics Rubinstein Wasserstein Entropy Prohorov Applications Ergodicity Functional ineq. Convergence rate 2/39 Institut Mines-Telecom Functional Stein’s method

  4. Roadmap Girsanov ν ≪ µ Probability Computations metrics Stein Applications ν = T ∗ m Ergodicity Optimal Types Functional Transportation ineq. Rubinstein Convergence rate Wasserstein Entropy Prohorov 2/39 Institut Mines-Telecom Functional Stein’s method

  5. Roadmap Girsanov ν ≪ µ Probability Computations metrics Stein Applications ν = T ∗ m Ergodicity Optimal Types Functional Transportation ineq. Rubinstein Convergence rate Wasserstein Entropy Prohorov 2/39 Institut Mines-Telecom Functional Stein’s method

  6. Rubinstein distance Definition ◮ ( F , d ) a Polish space 3/39 Institut Mines-Telecom Functional Stein’s method

  7. Rubinstein distance Definition ◮ ( F , d ) a Polish space ◮ c a distance on F 3/39 Institut Mines-Telecom Functional Stein’s method

  8. Rubinstein distance Definition ◮ ( F , d ) a Polish space ◮ c a distance on F ◮ F ∈ Lip c iff | F ( x ) − F ( y ) | ≤ c ( x , y ) 3/39 Institut Mines-Telecom Functional Stein’s method

  9. Rubinstein distance Definition ◮ ( F , d ) a Polish space ◮ c a distance on F ◮ F ∈ Lip c iff | F ( x ) − F ( y ) | ≤ c ( x , y ) ◮ µ and ν ′ 2 proba. measures on F � � d R ( µ, ν ′ ) = sup F d ν ′ F d µ − F ∈ Lip c 3/39 Institut Mines-Telecom Functional Stein’s method

  10. Some examples ◮ F = R n ◮ d = c =Euclidean distance ◮ Convergence in Rubinstein is equivalent to convergence in distribution (Dudley) 4/39 Institut Mines-Telecom Functional Stein’s method

  11. Some examples ◮ F = R n ◮ d = c =Euclidean distance ◮ Convergence in Rubinstein is equivalent to convergence in distribution (Dudley) Wiener space ◮ F = space of continuous functions on [0 , 1] ◮ d =uniform distance ◮ c =distance in the Cameron-Martin space �� 1 � 1 / 2 | f ′ ( s ) − g ′ ( s ) | 2 d s c ( f , g ) = 0 4/39 Institut Mines-Telecom Functional Stein’s method

  12. Configuration space Definition A configuration is a locally finite set of particles on a Polish space Y � � f d ω = f ( x ) x ∈ ω 5/39 Institut Mines-Telecom Functional Stein’s method

  13. Configuration space Definition A configuration is a locally finite set of particles on a Polish space Y � � f d ω = f ( x ) x ∈ ω Vague topology � � vaguely n →∞ ω n − − − − → ω ⇐ ⇒ f d ω n − − − → f d ω for all f continuous with compact support from Y to R 5/39 Institut Mines-Telecom Functional Stein’s method

  14. Configuration space Definition A configuration is a locally finite set of particles on a Polish space Y � � f d ω = f ( x ) x ∈ ω Vague topology � � vaguely n →∞ ω n − − − − → ω ⇐ ⇒ f d ω n − − − → f d ω for all f continuous with compact support from Y to R d is the associated distance 5/39 Institut Mines-Telecom Functional Stein’s method

  15. Lipschitz functionals Distance between configurations c ( ω, η ) = dist TV ( ω, η ) = number of different points 6/39 Institut Mines-Telecom Functional Stein’s method

  16. Lipschitz functionals Distance between configurations c ( ω, η ) = dist TV ( ω, η ) = number of different points Definition F : N Y → R is TV–Lip 1 if | F ( ω ) − F ( η ) | ≤ dist TV ( ω, η ) 6/39 Institut Mines-Telecom Functional Stein’s method

  17. Lipschitz functionals Distance between configurations c ( ω, η ) = dist TV ( ω, η ) = number of different points Definition F : N Y → R is TV–Lip 1 if | F ( ω ) − F ( η ) | ≤ dist TV ( ω, η ) Definition (Rubinstein distance) � � E P F − E Q F d R ( P , Q ) := sup , F ∈ TV–Lip 1 6/39 Institut Mines-Telecom Functional Stein’s method

  18. Convergence in configuration space Theorem (D- Schulte-Th¨ ale) d R ( P n , Q ) n →∞ distr. − − − → 0 = ⇒ P n − − − → Q Convergence in N Y 7/39 Institut Mines-Telecom Functional Stein’s method

  19. Generic scheme Initial space Target space ( E , ν ) ( F , µ ) 8/39 Institut Mines-Telecom Functional Stein’s method

  20. Generic scheme Initial space Target space ( E , ν ) ( F , µ ) T ( F , T ∗ ν ) 8/39 Institut Mines-Telecom Functional Stein’s method

  21. Generic scheme Initial space Target space ( E , ν ) ( F , µ ) T dist.( T ∗ ν, µ ) ? ( F , T ∗ ν ) 8/39 Institut Mines-Telecom Functional Stein’s method

  22. Motivation : Poisson polytopes 1 5 3 1 6 5 234 4 0 2 6 η ξ ( η ) 9/39 Institut Mines-Telecom Functional Stein’s method

  23. Motivation : Poisson polytopes 1 3 5 1 6 5 234 4 0 2 6 η ξ ( η ) Question What happens when the number of points goes to infinity ? 9/39 Institut Mines-Telecom Functional Stein’s method

  24. Poisson point process Hypothesis Points are distributed to a Poisson process of control measure t K Definition ◮ The number of points is a Poisson rv ( t K ( S d − 1 )) ◮ Given the number of points, they are independently drawn with distribution K 10/39 Institut Mines-Telecom Functional Stein’s method

  25. Framework Initial space Target space ( N X , π t K ) ( N Y , π M ) 11/39 Institut Mines-Telecom Functional Stein’s method

  26. Framework Initial space Target space ( N X , π t K ) ( N Y , π M ) T t ( N Y , T ∗ t π t K ) 11/39 Institut Mines-Telecom Functional Stein’s method

  27. Framework Initial space Target space ( N X , π t K ) ( N Y , π M ) T t T t ( η ) = t γ � � = � x − y � ( N Y , T ∗ t π t K ) x , y ∈ η (2) 2 11/39 Institut Mines-Telecom Functional Stein’s method

  28. Rescaling : γ = 2 / ( d − 1) Campbell-Mecke formula � � f ( x ) = t k E f ( x 1 , · · · , x k ) K (d x 1 , · · · , d x k ) x 1 , ··· , x k ∈ ω ( k ) � = 12/39 Institut Mines-Telecom Functional Stein’s method

  29. Rescaling : γ = 2 / ( d − 1) Campbell-Mecke formula � � f ( x ) = t k E f ( x 1 , · · · , x k ) K (d x 1 , · · · , d x k ) x 1 , ··· , x k ∈ ω ( k ) � = Mean number of points (after rescaling) 1 � t γ x − t γ y �≤ β = t 2 1 �� � 2 E S d − 1 ⊗ S d − 1 1 � x − y �≤ t − γ β d x d y 2 x � = y ∈ ω 12/39 Institut Mines-Telecom Functional Stein’s method

  30. Rescaling : γ = 2 / ( d − 1) Campbell-Mecke formula � � f ( x ) = t k E f ( x 1 , · · · , x k ) K (d x 1 , · · · , d x k ) x 1 , ··· , x k ∈ ω ( k ) � = Mean number of points (after rescaling) 1 � t γ x − t γ y �≤ β = t 2 1 �� � 2 E S d − 1 ⊗ S d − 1 1 � x − y �≤ t − γ β d x d y 2 x � = y ∈ ω Geometry β t − γ ( y )) = κ d − 1 ( β t − γ ) d − 1 +( d − 1) κ d − 1 V d − 1 ( S d − 1 ∩ B d ( β t − γ ) d + O ( t − γ ( 2 12/39 Institut Mines-Telecom Functional Stein’s method

  31. Rescaling : γ = 2 / ( d − 1) Campbell-Mecke formula � � f ( x ) = t k E f ( x 1 , · · · , x k ) K (d x 1 , · · · , d x k ) x 1 , ··· , x k ∈ ω ( k ) � = Mean number of points (after rescaling) 1 � t γ x − t γ y �≤ β = t 2 1 �� � 2 E S d − 1 ⊗ S d − 1 1 � x − y �≤ t − γ β d x d y 2 x � = y ∈ ω Geometry β t − γ ( y )) = κ d − 1 ( β t − γ ) d − 1 +( d − 1) κ d − 1 V d − 1 ( S d − 1 ∩ B d ( β t − γ ) d + O ( t − γ ( 2 12/39 Institut Mines-Telecom Functional Stein’s method

  32. Schulte-Th¨ ale (2012) based on Peccati (2011) � � P ( t 2 / ( d − 1) T m ( ξ ) > x ) − e − β x ( d − 1) m − 1 � ( β x d − 1 ) i � � � � � i ! � � i =0 � ≤ C x t − min(1 / 2 , 2 / ( d − 1)) 13/39 Institut Mines-Telecom Functional Stein’s method

  33. Schulte-Th¨ ale (2012) based on Peccati (2011) � � P ( t 2 / ( d − 1) T m ( ξ ) > x ) − e − β x ( d − 1) m − 1 � ( β x d − 1 ) i � � � � � i ! � � i =0 � ≤ C x t − min(1 / 2 , 2 / ( d − 1)) What about speed of convergence as a process ? 13/39 Institut Mines-Telecom Functional Stein’s method

  34. Stein method in one picture m = T ∗ ν P ∗ t m µ µ P ∗ t µ = µ 14/39 Institut Mines-Telecom Functional Stein’s method

  35. Stein method The main tool Construct a Markov process ( X ( s ) , s ≥ 0) ◮ with values in F ◮ ergodic with µ as invariant distribution X ( s ) distr . − − − → µ for all initial condition X (0) ◮ for which µ is a stationary distribution X (0) distr. ⇒ X ( s ) distr. = µ = = µ, ∀ s > 0 ◮ Equivalently � LF d m = 0 , ∀ F iff m = µ 15/39 Institut Mines-Telecom Functional Stein’s method

  36. Dirichlet structure LF = dPt F � � dt � t =0 LF / G tq E ( F , G )= Pt = etL E ( F , H )= d dt � Pt F , G � L 2( µ ) � G , H � L 2( m µ ) , ∀ H Pt F → � F d µ at t = 0 E ( F , G ) = � LF , G � L 2( µ ) µ, L � LF d µ = 0 16/39 Institut Mines-Telecom Functional Stein’s method

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend