free fermions and determinantal processes
play

Free fermions and -determinantal processes Fabio Deelan Cunden - PowerPoint PPT Presentation

Free fermions and -determinantal processes Fabio Deelan Cunden (University College Dublin) based on J. Phys. A: Math. Theor. 52 , 165202 (2019) joint work with Satya N. Majumdar (Paris) and Neil OConnell (Dublin) Statistical Mechanics


  1. Free fermions and α -determinantal processes Fabio Deelan Cunden (University College Dublin) based on J. Phys. A: Math. Theor. 52 , 165202 (2019) joint work with Satya N. Majumdar (Paris) and Neil O’Connell (Dublin) Statistical Mechanics Seminar - University of Warwick, Jan 23, 2020 1 / 23

  2. Determinantal point processes A point process or ‘random point configuration’ on R can be described in terms of its correlation functions (when they exist) P ( exactly one particle in ( x i , x i + δ ) , for all i = 1 , . . . , n ) ̺ n ( x 1 , . . . , x n ) = lim δ n δ → 0 2 / 23

  3. Determinantal point processes A point process or ‘random point configuration’ on R can be described in terms of its correlation functions (when they exist) P ( exactly one particle in ( x i , x i + δ ) , for all i = 1 , . . . , n ) ̺ n ( x 1 , . . . , x n ) = lim δ n δ → 0 Determinantal / fermionic processes (Macchi 70’s) are point processes with ̺ n ( x 1 , . . . , x n ) = 1 ≤ i , j ≤ n K ( x i , x j ) , det n ∈ N . The function K ( x , y ) is called correlation kernel . Macchi-Soshnikov criterion: If K is self-adjoint, locally trace class, with 0 ≤ K ≤ 1 , then the random point configuration exists and is unique (and exhibits repulsion). Examples: • Free fermions (Pauli exclusion principle); • Eigenvalues of random matrices (Dyson, Mehta, Gaudin - level repulsion); • Non-intersecting paths. 2 / 23

  4. α -determinantal point processes Let A be a n × n matrix.and α a scalar. The α -determinant of A (Vere-Jones, 1988) is � det A = sgn( σ ) A 1 σ ( 1 ) A 2 σ ( 2 ) · · · A n σ ( n ) σ ∈ S n where m ( σ ) = # disjoint cycles in the permutation σ . We simply replace the signature sgn( σ ) = ( − 1 ) n − m ( σ ) by α n − m ( σ ) in the definition of the ordinary determinant. It is clear that det − 1 A = det A , det 1 A = per A , det 0 A = A 11 A 22 · · · A nn . 3 / 23

  5. α -determinantal point processes Let A be a n × n matrix.and α a scalar. The α -determinant of A (Vere-Jones, 1988) is � ( − 1 ) n − m ( σ ) A 1 σ ( 1 ) A 2 σ ( 2 ) · · · A n σ ( n ) det A = σ ∈ S n where m ( σ ) = # disjoint cycles in the permutation σ . We simply replace the signature sgn( σ ) = ( − 1 ) n − m ( σ ) by α n − m ( σ ) in the definition of the ordinary determinant. It is clear that det − 1 A = det A , det 1 A = per A , det 0 A = A 11 A 22 · · · A nn . 3 / 23

  6. α -determinantal point processes Let A be a n × n matrix and α a scalar. The α -determinant of A (Vere-Jones, 1988) is � α n − m ( σ ) A 1 σ ( 1 ) A 2 σ ( 2 ) · · · A n σ ( n ) det α A = σ ∈ S n where m ( σ ) = # disjoint cycles in the permutation σ . We simply replace the signature sgn( σ ) = ( − 1 ) n − m ( σ ) by α n − m ( σ ) in the definition of the ordinary determinant. It is clear that det − 1 A = det A , det 1 A = per A , det 0 A = A 11 A 22 · · · A nn . An α -determinantal point process (Shirai and Takahashi, 2003) with kernel K is defined, when it exists, as the point process with n -point correlation functions ̺ n ( x 1 , . . . , x n ) = det α 1 ≤ i , j ≤ n K ( x i , x j ) . α = − 1 : determinantal process; α = 1 : permanental process; α = 0 : Poisson process (with intensity K ( x , x ) ). 3 / 23

  7. α -determinantal point processes An α -DPP with kernel K is defined, when it exists, as the point process with n -point correlation functions ̺ n ( x 1 , . . . , x n ) = det α 1 ≤ i , j ≤ n K ( x i , x j ) . Existence criterion when α < 0 and K is self-adjoint and locally trace class: 4 / 23

  8. α -determinantal point processes An α -DPP with kernel K is defined, when it exists, as the point process with n -point correlation functions ̺ n ( x 1 , . . . , x n ) = det α 1 ≤ i , j ≤ n K ( x i , x j ) . Existence criterion when α < 0 and K is self-adjoint and locally trace class: • The point process exists (and is unique) iff − 1 α ∈ N and 0 ≤ − α K ≤ 1 . 4 / 23

  9. α -determinantal point processes An α -DPP with kernel K is defined, when it exists, as the point process with n -point correlation functions ̺ n ( x 1 , . . . , x n ) = det α 1 ≤ i , j ≤ n K ( x i , x j ) . Existence criterion when α < 0 and K is self-adjoint and locally trace class: • The point process exists (and is unique) iff − 1 α ∈ N and 0 ≤ − α K ≤ 1 . • The α -DPP is a superposition (union) of − 1 α i.i.d. DPPs with kernel − α K . 4 / 23

  10. Free fermions in a harmonic potential N spin-polarized noninteracting fermions in a one-dimensional harmonic potential. Suppose that the system is in a stationary state (an eigenstate of H ). 5 / 23

  11. Free fermions in a harmonic potential N spin-polarized noninteracting fermions in a one-dimensional harmonic potential. Suppose that the system is in a stationary state (an eigenstate of H ). Qestions: 1. Find the particle density of the system. 2. Find the pair correlation function. 3. Find the n -point correlation function. 4. Study the particle statistics asymptotics as N → ∞ . Fact: the number statistics of free fermions forms a determinantal point process. 5 / 23

  12. Qantum harmonic oscillator Single particle Schr¨ odinger equation: − ∂ 2 ∂ x 2 + x 2 � � ψ ( x ) = E ψ ( x ) , x ∈ R . 4 ψ k ( x ) = h k ( x ) e − x 2 / 4 , Solutions: E k = k + 1 / 2 , k ∈ Z + 6 / 23

  13. Qantum harmonic oscillator Single particle Schr¨ odinger equation: − ∂ 2 ∂ x 2 + x 2 � � ψ ( x ) = E ψ ( x ) , x ∈ R . 4 ψ k ( x ) = h k ( x ) e − x 2 / 4 , Solutions: E k = k + 1 / 2 , k ∈ Z + Non-interacting fermions: antisymmetric superpositions of the ψ k ’s 1 √ Ψ k 1 ,..., k N ( x 1 , . . . , x N ) = 1 ≤ i , j ≤ N ψ k i ( x j ) , det with 0 ≤ k 1 < k 2 < · · · < k N . N ! They are normalised eigenfunctions of the Hamiltonian � − ∂ 2 + x 2 � � i H = with eigenvalues E = k 1 + · · · + k N + N / 2 ∂ x 2 4 i i in the subspace of completely antisymmetric states Ψ( x σ ( 1 ) , . . . , x σ ( N ) ) = sgn( σ )Ψ k 1 ,..., k N ( x 1 , . . . , x N ) . 6 / 23

  14. Free fermions in a harmonic potential Denote by J = { k 1 , . . . , k N } ⊂ Z + the occupied levels. | Ψ J ( x 1 , . . . , x N ) | 2 = 1 1 ≤ i , j ≤ N ψ k i ( x j ) = 1 1 ≤ i , j ≤ N ψ k i ( x j ) det det 1 ≤ i , j ≤ N K J ( x i , x j ) , det N ! N ! � K J ( x , y ) = ψ k ( x ) ψ k ( y ) : integral kernel of projection onto span { ψ k ( x ): k ∈ J } k ∈ J 7 / 23

  15. Free fermions in a harmonic potential Denote by J = { k 1 , . . . , k N } ⊂ Z + the occupied levels. | Ψ J ( x 1 , . . . , x N ) | 2 = 1 1 ≤ i , j ≤ N ψ k i ( x j ) = 1 1 ≤ i , j ≤ N ψ k i ( x j ) det det 1 ≤ i , j ≤ N K J ( x i , x j ) , det N ! N ! � K J ( x , y ) = ψ k ( x ) ψ k ( y ) : integral kernel of projection onto span { ψ k ( x ): k ∈ J } k ∈ J Ψ J defines a determinantal point process on R with correlation kernel K J ( x , y ) : N ! ˆ | Ψ J ( x 1 , . . . , x N ) | 2 d x n + 1 · · · d x N ̺ n ( x 1 , . . . , x n ) = ( N − n )! N ! ˆ 1 = 1 ≤ i , j ≤ N K J ( x i , x j ) d x n + 1 · · · d x N det ( N − n )! N ! = 1 ≤ i , j ≤ n K J ( x i , x j ) det (by Mehta-Gaudin integration lemma) 7 / 23

  16. Free fermions in a harmonic potential Particle density: ̺ 1 ( x ) = K J ( x , x ) � K J ( x 1 , x 1 ) � K J ( x 1 , x 2 ) Pair correlation fcn: ̺ 2 ( x 1 , x 2 ) = det K J ( x 2 , x 1 ) K J ( x 2 , x 2 ) = K J ( x 1 , x 1 ) K J ( x 2 , x 2 ) − | K J ( x 1 , x 2 ) | 2 . . . ̺ n ( x 1 , . . . , x n ) = 1 ≤ i , j ≤ n K J ( x i , x j ) det . . . � with K J ( x , y ) = ψ k ( x ) ψ k ( y ) , J = { k 1 , . . . , k N } . k ∈ J 8 / 23

  17. Free fermions in a harmonic potential Particle density: ̺ 1 ( x ) = K J ( x , x ) � K J ( x 1 , x 1 ) � K J ( x 1 , x 2 ) Pair correlation fcn: ̺ 2 ( x 1 , x 2 ) = det K J ( x 2 , x 1 ) K J ( x 2 , x 2 ) = K J ( x 1 , x 1 ) K J ( x 2 , x 2 ) − | K J ( x 1 , x 2 ) | 2 . . . ̺ n ( x 1 , . . . , x n ) = 1 ≤ i , j ≤ n K J ( x i , x j ) det . . . � with K J ( x , y ) = ψ k ( x ) ψ k ( y ) , J = { k 1 , . . . , k N } . k ∈ J Large- N asymptotics of ̺ n ( x 1 , . . . , x n ) ? Need to understand the asymptotics of the correlation kernel K J ( x , y ) . 8 / 23

  18. Ground state: J = { 0 , 1 , . . . , N − 1 } 9 / 23

  19. Ground state and the GUE eigenvalue process Suppose that J = [ 0 . . N ) : 1 √ Ψ GS ( x 1 , . . . , x N ) = 1 ≤ i , j ≤ N ψ i − 1 ( x j ) . det N ! This is the ground state. The corresponding projection kernel N − 1 � K J ( x , y ) = ψ k ( x ) ψ k ( y ) k = 0 is the kernel of the Gaussian Unitary Ensemble of random matrix theory. 10 / 23

  20. Ground state and the GUE eigenvalue process Suppose that J = [ 0 . . N ) : 1 √ Ψ GS ( x 1 , . . . , x N ) = 1 ≤ i , j ≤ N ψ i − 1 ( x j ) . det N ! This is the ground state. The corresponding projection kernel N − 1 � K J ( x , y ) = ψ k ( x ) ψ k ( y ) k = 0 is the kernel of the Gaussian Unitary Ensemble of random matrix theory. Let X be a N × N random complex Hermitian matrix with independent standard Gaussian entries. Then, the eigenvalues of X have joint probability density p ( x 1 , . . . , x N ) = | Ψ GS ( x 1 , . . . , x N ) | 2 . (from the Weyl denominator formula. Mehta, Gaudin, Dyson, ...) 10 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend