foundations of cyber physical systems
play

Foundations of Cyber-Physical Systems Andr e Platzer - PowerPoint PPT Presentation

Foundations of Cyber-Physical Systems Andr e Platzer aplatzer@cs.cmu.edu Computer Science Department Carnegie Mellon University, Pittsburgh, PA 0.5 0.4 0.3 0.2 1.0 0.1 0.8 0.6 0.4 0.2 Andr e Platzer (CMU) Foundations of


  1. CPS Analysis Concept (Differential Dynamic Logic) (JAR’08,LICS’12) x � = m x � = m [ α ] φ φ [ ] x � = m α x � = m x ′ = v , v ′ = a a := − b assign ODE 0.5 a 6 v x 10 m 7 t 0.0 1 2 3 4 5 6 8 4 � 0.5 6 � 1.0 2 4 � 1.5 2 7 t 0 � 2.0 1 2 3 4 5 6 7 t 0 1 2 3 4 5 6 � 2.5 � 2 � 2 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 10 / 40

  2. CPS Analysis Concept (Differential Dynamic Logic) (JAR’08,LICS’12) x � = m x � = m [ α ] φ φ [ ] x � = m α x � = m x ′ = v , v ′ = a ( if (SB( x , m )) a := − b ) test assign ODE 0.5 a 6 v x 10 m 7 t 0.0 1 2 3 4 5 6 8 4 � 0.5 6 � 1.0 2 4 � 1.5 2 7 t 0 � 2.0 1 2 3 4 5 6 7 t 0 1 2 3 4 5 6 � 2.5 � 2 � 2 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 10 / 40

  3. CPS Analysis Concept (Differential Dynamic Logic) (JAR’08,LICS’12) [ α ] φ φ α seq. compose ( if (SB( x , m )) a := − b ) ; x ′ = v , v ′ = a test assign ODE 0.5 a 6 v x 10 m 7 t 0.0 1 2 3 4 5 6 8 4 � 0.5 6 � 1.0 2 4 � 1.5 2 7 t 0 � 2.0 1 2 3 4 5 6 7 t 0 1 2 3 4 5 6 � 2.5 � 2 � 2 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 10 / 40

  4. CPS Analysis Concept (Differential Dynamic Logic) (JAR’08,LICS’12) [ α ] φ φ α seq. nondet. compose repeat � ( if (SB( x , m )) a := − b ) ; x ′ = v , v ′ = a � ∗ test assign ODE 0.5 a 6 v x 10 m 7 t 0.0 1 2 3 4 5 6 8 4 � 0.5 6 � 1.0 2 4 � 1.5 2 7 t 0 � 2.0 1 2 3 4 5 6 7 t 0 1 2 3 4 5 6 � 2.5 � 2 � 2 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 10 / 40

  5. CPS Analysis Concept (Differential Dynamic Logic) (JAR’08,LICS’12) x � = m x � = m [ α ] φ φ [ ] x � = m α x � = m �� ( if (SB( x , m )) a := − b ) ; x ′ = v , v ′ = a � ∗ � x � = m � �� � post 0.5 a 6 v x all runs 10 m 7 t 0.0 1 2 3 4 5 6 8 4 � 0.5 6 � 1.0 2 4 � 1.5 2 7 t 0 � 2.0 1 2 3 4 5 6 7 t 0 1 2 3 4 5 6 � 2.5 � 2 � 2 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 10 / 40

  6. CPS Analysis Concept (Differential Dynamic Logic) (JAR’08,LICS’12) x � = m x � = m [ α ] φ φ [ ] x � = m α x � = m �� ( if (SB( x , m )) a := − b ) ; x ′ = v , v ′ = a � ∗ � x � = m ∧ b > 0 → x � = m � �� � � �� � post init 0.5 a 6 v x 10 m 7 t 0.0 1 2 3 4 5 6 8 4 � 0.5 6 � 1.0 2 4 � 1.5 2 7 t 0 � 2.0 1 2 3 4 5 6 7 t 0 1 2 3 4 5 6 � 2.5 � 2 � 2 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 10 / 40

  7. CPS Analysis Concept (Differential Dynamic Logic) (JAR’08,LICS’12) x � = m x � = m [ α ] φ φ [ ] x � = m α nondet. x � = m choice �� (? ¬ SB( x , m ) ∪ a := − b ) ; x ′ = v , v ′ = a � ∗ � x � = m ∧ b > 0 → x � = m � �� � � �� � post init 0.5 a 6 v x 10 m 7 t 0.0 1 2 3 4 5 6 8 4 � 0.5 6 � 1.0 2 4 � 1.5 2 7 t 0 � 2.0 1 2 3 4 5 6 7 t 0 1 2 3 4 5 6 � 2.5 � 2 � 2 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 10 / 40

  8. CPS Analysis Concept (Differential Dynamic Logic) (JAR’08,LICS’12) x � = m x � = m [ α ] φ φ [ ] x � = m α nondet. x � = m test choice �� (? ¬ SB( x , m ) ∪ a := − b ) ; x ′ = v , v ′ = a � ∗ � x � = m ∧ b > 0 → x � = m � �� � � �� � post init 0.5 a 6 v x 10 m 7 t 0.0 1 2 3 4 5 6 8 4 � 0.5 6 � 1.0 2 4 � 1.5 2 7 t 0 � 2.0 1 2 3 4 5 6 7 t 0 1 2 3 4 5 6 � 2.5 � 2 � 2 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 10 / 40

  9. Hybrid Programs vs. Hybrid Automata Want: Compositional verification far cls x � = m brk fsa far ≡ x ′ = v , v ′ = A & ¬ SB( x , m ) brk ≡ x ′ = v , v ′ = − b & SB( x , m ) ∨ true cls ≡ x ′ = v , v ′ = . . . & . . . fsa ≡ x ′ = 0 , v ′ = 0 & v = 0 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 11 / 40

  10. Hybrid Programs vs. Hybrid Automata Want: Compositional verification far x � = m cls cls brk fsa far ≡ x ′ = v , v ′ = A & ¬ SB( x , m ) brk ≡ x ′ = v , v ′ = − b & SB( x , m ) ∨ true cls ≡ x ′ = v , v ′ = . . . & . . . fsa ≡ x ′ = 0 , v ′ = 0 & v = 0 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 11 / 40

  11. Hybrid Programs vs. Hybrid Automata Want: Compositional verification far x � = m cls cls brk fsa far ≡ x ′ = v , v ′ = A & ¬ SB( x , m ) brk ≡ x ′ = v , v ′ = − b & SB( x , m ) ∨ true cls ≡ x ′ = v , v ′ = . . . & . . . fsa ≡ x ′ = 0 , v ′ = 0 & v = 0 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 11 / 40

  12. Hybrid Programs vs. Hybrid Automata Want: Compositional verification far x � = m cls cls brk Not fsa Compositional far ≡ x ′ = v , v ′ = A & ¬ SB( x , m ) brk ≡ x ′ = v , v ′ = − b & SB( x , m ) ∨ true cls ≡ x ′ = v , v ′ = . . . & . . . fsa ≡ x ′ = 0 , v ′ = 0 & v = 0 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 11 / 40

  13. Differential Dynamic Logic d L : Syntax Definition (Hybrid program a ) x := f ( x ) | ? Q | x ′ = f ( x ) & Q | a ∪ b | a ; b | a ∗ Definition (d L Formula P ) e 1 ≥ e 2 | ¬ P | P ∧ Q | ∀ x P | ∃ x P | [ a ] P | � a � P Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 12 / 40

  14. Differential Dynamic Logic d L : Syntax Discrete Differential Seq. Nondet. Test Nondet. Assign Equation Compose Repeat Condition Choice Definition (Hybrid program a ) x := f ( x ) | ? Q | x ′ = f ( x ) & Q | a ∪ b | a ; b | a ∗ Definition (d L Formula P ) e 1 ≥ e 2 | ¬ P | P ∧ Q | ∀ x P | ∃ x P | [ a ] P | � a � P All Some All Some Reals Reals Runs Runs Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 12 / 40

  15. Differential Dynamic Logic d L : Semantics Definition (Hybrid program semantics) ([ [ · ] ] : HP → ℘ ( S × S )) [ [ x := f ( x )] ] = { ( v , w ) : w = v except [ [ x ] ] w = [ [ f ( x )] ] v } [ [? Q ] ] = { ( v , v ) : v ∈ [ [ Q ] ] } [ x ′ = f ( x )] = x ′ = f ( x ) for some duration r } [ ] = { ( ϕ (0) , ϕ ( r )) : ϕ | [ [ a ∪ b ] ] = [ [ a ] ] ∪ [ [ b ] ] [ [ a ; b ] ] = [ [ a ] ] ◦ [ [ b ] ] � [ a n ] [ a ∗ ] [ ] = [ ] n ∈ N Definition (d L semantics) ([ [ · ] ] : Fml → ℘ ( S )) [ [ e 1 ≥ e 2 ] ] = { v : [ [ e 1 ] ] v ≥ [ [ e 2 ] ] v } ]) ∁ [ [ ¬ P ] ] = ([ [ P ] [ [ P ∧ Q ] ] = [ [ P ] ] ∩ [ [ Q ] ] [ [ � a � P ] ] = [ [ a ] ] ◦ [ [ P ] ] = { v : w ∈ [ [ P ] ] for some w ( v , w ) ∈ [ [ a ] ] } [ [[ a ] P ] ] = [ [ ¬� a �¬ P ] ] = { v : w ∈ [ [ P ] ] for all w ( v , w ) ∈ [ [ a ] ] } ] = { v : v r [ [ ∃ x P ] x ∈ [ [ P ] ] for some r ∈ R } Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 13 / 40

  16. Differential Dynamic Logic d L : Transition Semantics x w if w ( x ) = [ [ f ( x )] ] v x := f ( x ) and w ( z ) = v ( z ) for z � = x v w v t 0 x ϕ ( t ) x ′ = f ( x ) & Q w v w Q v t r 0 x ′ = f ( x ) & Q x ? Q v no change if v ∈ [ [ Q ] ] if v ∈ [ [ Q ] ] otherwise no transition v t 0 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 14 / 40

  17. Differential Dynamic Logic d L : Transition Semantics w 1 x v a w 1 v a ∪ b w 2 b t w 2 x a ; b s v s w w v a t b a ∗ x w v v v 1 v 2 w a a a t Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 14 / 40

  18. Differential Dynamic Logic d L : Transition Semantics w 1 x v a w 1 v a ∪ b w 2 b t w 2 x a ; b s v s w v w a t b a ∗ x w v v v 1 v 2 w a a a t Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 14 / 40

  19. Differential Dynamic Logic d L : Transition Semantics w 1 x v a w 1 v a ∪ b w 2 b t w 2 x a ; b s v s w v w a t b ( a ; b ) ∗ x w v v v 1 v 2 w t a b a b a b Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 14 / 40

  20. Differential Dynamic Logic d L : Semantics Definition (d L Formulas) P v P [ a ] P P Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 15 / 40

  21. Differential Dynamic Logic d L : Semantics Definition (d L Formulas) v P � a � P Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 15 / 40

  22. Differential Dynamic Logic d L : Semantics Definition (d L Formulas) [ a ] P a -span v Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 15 / 40

  23. Differential Dynamic Logic d L : Semantics Definition (d L Formulas) [ a ] P a -span v � b � P b -span Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 15 / 40

  24. Differential Dynamic Logic d L : Semantics Definition (d L Formulas) [ a ] P � b � [ a ]-span a -span v � b � P b -span Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 15 / 40

  25. Differential Dynamic Logic d L : Semantics Definition (d L Formulas) [ a ] P � b � [ a ]-span a -span v � b � P b -span compositional semantics ⇒ compositional proofs! Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 15 / 40

  26. Ex: Car Control Accelerate condition ? H Example ( Single car car s ) � ((? H ; a := A ) ∪ a := − b ); x ′ = v , v ′ = a & v ≥ 0 � ∗ 6 v x 0.5 a 10 m 7 t 0.0 8 1 2 3 4 5 6 4 � 0.5 6 2 � 1.0 4 � 1.5 2 7 t 0 1 2 3 4 5 6 7 t � 2.0 0 1 2 3 4 5 6 � 2.5 � 2 � 2 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 16 / 40

  27. Ex: Car Control Properties time-triggered H ≡ 2 b ( m − x ) ≥ v 2 + � �� A ε 2 + 2 ε v � A + b Example (Single car car ε time-triggered) � ((? H ; a := A ) ∪ a := − b ); t := 0; x ′ = v , v ′ = a , t ′ = 1 & v ≥ 0 ∧ t ≤ ε � ∗ Example ( Safely stays before traffic light m ) v 2 ≤ 2 b ( m − x ) ∧ A ≥ 0 ∧ b > 0 → [ car ε ] x ≤ m 6 v x 0.5 a 10 m 7 t 0.0 8 1 2 3 4 5 6 4 � 0.5 6 2 � 1.0 4 � 1.5 2 7 t 0 1 2 3 4 5 6 7 t � 2.0 0 1 2 3 4 5 6 � 2.5 � 2 � 2 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 17 / 40

  28. Ex: Car Control Properties time-triggered H ≡ 2 b ( m − x ) ≥ v 2 + � �� A ε 2 + 2 ε v � A + b Example (Single car car ε time-triggered) � ((? H ; a := A ) ∪ a := − b ); t := 0; x ′ = v , v ′ = a , t ′ = 1 & v ≥ 0 ∧ t ≤ ε � ∗ Example ( Live, can move everywhere) ε > 0 ∧ A > 0 ∧ b > 0 → ∀ p ∃ m � car ε � x ≥ p 6 v x 0.5 a 10 m 7 t 0.0 8 1 2 3 4 5 6 4 � 0.5 6 2 � 1.0 4 � 1.5 2 7 t 0 1 2 3 4 5 6 7 t � 2.0 0 1 2 3 4 5 6 � 2.5 � 2 � 2 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 17 / 40

  29. Outline CPS are Multi-Dynamical Systems 1 Hybrid Systems Hybrid Games Dynamic Logic of Dynamical Systems 2 Syntax Semantics Example: Car Control Design Proofs for CPS 3 Compositional Proof Calculus Example: Safe Car Control Theory of CPS 4 Soundness and Completeness Differential Invariants Example: Elementary Differential Invariants Differential Axioms Applications 5 Summary 6 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 17 / 40

  30. Differential Dynamic Logic: Axioms [:=] [ x := f ] p ( x ) ↔ p ( f ) [?] [? q ] p ↔ ( q → p ) [ ∪ ] [ a ∪ b ] p ( x ) ↔ [ a ] p ( x ) ∧ [ b ] p ( x ) [;] [ a ; b ] p ( x ) ↔ [ a ][ b ] p ( x ) [ ∗ ] [ a ∗ ] p ( x ) ↔ p ( x ) ∧ [ a ][ a ∗ ] p ( x ) K [ a ]( p ( x ) → q ( x )) → ([ a ] p ( x ) → [ a ] q ( x )) I [ a ∗ ]( p ( x ) → [ a ] p ( x )) → ( p ( x ) → [ a ∗ ] p ( x )) V p → [ a ] p [ x ′ = f ] p ( x ) ↔ ∀ t ≥ 0 [ x := x + ft ] p ( x ) DS LICS’12,CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 18 / 40

  31. Proofs for Hybrid Systems compositional semantics ⇒ compositional rules! Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 19 / 40

  32. Proofs for Hybrid Systems w 1 p ( x ) a [ a ] p ( x ) ∧ [ b ] p ( x ) v a ∪ b [ a ∪ b ] p ( x ) b w 2 p ( x ) Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 19 / 40

  33. Proofs for Hybrid Systems w 1 p ( x ) a [ a ] p ( x ) ∧ [ b ] p ( x ) v a ∪ b [ a ∪ b ] p ( x ) b w 2 p ( x ) a ; b [ a ][ b ] p ( x ) v s w [ a ; b ] p ( x ) a b [ a ][ b ] p ( x ) [ b ] p ( x ) p ( x ) Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 19 / 40

  34. Proofs for Hybrid Systems w 1 p ( x ) a [ a ] p ( x ) ∧ [ b ] p ( x ) v a ∪ b [ a ∪ b ] p ( x ) b w 2 p ( x ) a ; b [ a ][ b ] p ( x ) v s w [ a ; b ] p ( x ) a b [ a ][ b ] p ( x ) [ b ] p ( x ) p ( x ) a ∗ p ( x ) p ( x ) → [ a ] p ( x ) p ( x ) p ( x ) p ( x ) → [ a ] p ( x ) [ a ∗ ] p ( x ) v w a a a Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 19 / 40

  35. Example Proof: Safe Driving J ( x , v ) ≡ x ≤ m [;] J ( x , v ) → [ a := − b ; ( x ′ = v , v ′ = a )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  36. Example Proof: Safe Driving J ( x , v ) ≡ x ≤ m [:=] J ( x , v ) → [ a := − b ][ x ′ = v , v ′ = a ] J ( x , v ) [;] J ( x , v ) → [ a := − b ; ( x ′ = v , v ′ = a )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  37. Example Proof: Safe Driving J ( x , v ) ≡ x ≤ m [ ′ ] J ( x , v ) → [ x ′ = v , v ′ = − b ] J ( x , v ) [:=] J ( x , v ) → [ a := − b ][ x ′ = v , v ′ = a ] J ( x , v ) [;] J ( x , v ) → [ a := − b ; ( x ′ = v , v ′ = a )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  38. Example Proof: Safe Driving J ( x , v ) ≡ x ≤ m 2 t 2 + vt + x ] J ( x , v ) [:=] J ( x , v ) →∀ t ≥ 0 [ x := − b [ ′ ] J ( x , v ) → [ x ′ = v , v ′ = − b ] J ( x , v ) [:=] J ( x , v ) → [ a := − b ][ x ′ = v , v ′ = a ] J ( x , v ) [;] J ( x , v ) → [ a := − b ; ( x ′ = v , v ′ = a )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  39. Example Proof: Safe Driving J ( x , v ) ≡ x ≤ m 2 t 2 + vt + x ≤ m ) QE J ( x , v ) →∀ t ≥ 0 ( − b 2 t 2 + vt + x ] J ( x , v ) [:=] J ( x , v ) →∀ t ≥ 0 [ x := − b [ ′ ] J ( x , v ) → [ x ′ = v , v ′ = − b ] J ( x , v ) [:=] J ( x , v ) → [ a := − b ][ x ′ = v , v ′ = a ] J ( x , v ) [;] J ( x , v ) → [ a := − b ; ( x ′ = v , v ′ = a )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  40. Example Proof: Safe Driving J ( x , v ) ≡ x ≤ m J ( x , v ) → v 2 ≤ 2 b ( m − x ) 2 t 2 + vt + x ≤ m ) QE J ( x , v ) →∀ t ≥ 0 ( − b 2 t 2 + vt + x ] J ( x , v ) [:=] J ( x , v ) →∀ t ≥ 0 [ x := − b [ ′ ] J ( x , v ) → [ x ′ = v , v ′ = − b ] J ( x , v ) [:=] J ( x , v ) → [ a := − b ][ x ′ = v , v ′ = a ] J ( x , v ) [;] J ( x , v ) → [ a := − b ; ( x ′ = v , v ′ = a )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  41. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v x m J ( x , v ) → v 2 ≤ 2 b ( m − x ) 2 t 2 + vt + x ≤ m ) QE J ( x , v ) →∀ t ≥ 0 ( − b 2 t 2 + vt + x ] J ( x , v ) [:=] J ( x , v ) →∀ t ≥ 0 [ x := − b [ ′ ] J ( x , v ) → [ x ′ = v , v ′ = − b ] J ( x , v ) [:=] J ( x , v ) → [ a := − b ][ x ′ = v , v ′ = a ] J ( x , v ) [;] J ( x , v ) → [ a := − b ; ( x ′ = v , v ′ = a )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  42. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v x m [;] J ( x , v ) → [? ¬ SB; a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  43. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v x m [?] J ( x , v ) → [? ¬ SB][ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [;] J ( x , v ) → [? ¬ SB; a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  44. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v x m [;] J ( x , v ) →¬ SB → [ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [?] J ( x , v ) → [? ¬ SB][ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [;] J ( x , v ) → [? ¬ SB; a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  45. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v x m [:=] J ( x , v ) →¬ SB → [ a := A ][ x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) [;] J ( x , v ) →¬ SB → [ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [?] J ( x , v ) → [? ¬ SB][ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [;] J ( x , v ) → [? ¬ SB; a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  46. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v x m [ ′ ] J ( x , v ) →¬ SB → [ x ′ = v , v ′ = A , t ′ = 1 & t ≤ ε ] J ( x , v ) [:=] J ( x , v ) →¬ SB → [ a := A ][ x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) [;] J ( x , v ) →¬ SB → [ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [?] J ( x , v ) → [? ¬ SB][ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [;] J ( x , v ) → [? ¬ SB; a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  47. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v x m 2 t 2 + vt + x ] J ( x , v )) [:=] J ( x , v ) →¬ SB → ∀ t ≥ 0 ( t ≤ ε → [ x := A [ ′ ] J ( x , v ) →¬ SB → [ x ′ = v , v ′ = A , t ′ = 1 & t ≤ ε ] J ( x , v ) [:=] J ( x , v ) →¬ SB → [ a := A ][ x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) [;] J ( x , v ) →¬ SB → [ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [?] J ( x , v ) → [? ¬ SB][ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [;] J ( x , v ) → [? ¬ SB; a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  48. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v x m 2 t 2 + vt + x , At + v )) J ( x , v ) →¬ SB → ∀ t ≥ 0 ( t ≤ ε → J ( A 2 t 2 + vt + x ] J ( x , v )) [:=] J ( x , v ) →¬ SB → ∀ t ≥ 0 ( t ≤ ε → [ x := A [ ′ ] J ( x , v ) →¬ SB → [ x ′ = v , v ′ = A , t ′ = 1 & t ≤ ε ] J ( x , v ) [:=] J ( x , v ) →¬ SB → [ a := A ][ x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) [;] J ( x , v ) →¬ SB → [ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [?] J ( x , v ) → [? ¬ SB][ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [;] J ( x , v ) → [? ¬ SB; a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  49. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v x m QE J ( x , v ) →¬ SB → ∀ t ≥ 0 ( t ≤ ε → ( At + v ) 2 ≤ 2 b ( m − A 2 t 2 − vt − x )) 2 t 2 + vt + x , At + v )) J ( x , v ) →¬ SB → ∀ t ≥ 0 ( t ≤ ε → J ( A 2 t 2 + vt + x ] J ( x , v )) [:=] J ( x , v ) →¬ SB → ∀ t ≥ 0 ( t ≤ ε → [ x := A [ ′ ] J ( x , v ) →¬ SB → [ x ′ = v , v ′ = A , t ′ = 1 & t ≤ ε ] J ( x , v ) [:=] J ( x , v ) →¬ SB → [ a := A ][ x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) [;] J ( x , v ) →¬ SB → [ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [?] J ( x , v ) → [? ¬ SB][ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [;] J ( x , v ) → [? ¬ SB; a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  50. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v x m J ( x , v ) →¬ SB → ( A ε + v ) 2 ≤ 2 b ( m − A 2 ε 2 − v ε − x ) QE J ( x , v ) →¬ SB → ∀ t ≥ 0 ( t ≤ ε → ( At + v ) 2 ≤ 2 b ( m − A 2 t 2 − vt − x )) 2 t 2 + vt + x , At + v )) J ( x , v ) →¬ SB → ∀ t ≥ 0 ( t ≤ ε → J ( A 2 t 2 + vt + x ] J ( x , v )) [:=] J ( x , v ) →¬ SB → ∀ t ≥ 0 ( t ≤ ε → [ x := A [ ′ ] J ( x , v ) →¬ SB → [ x ′ = v , v ′ = A , t ′ = 1 & t ≤ ε ] J ( x , v ) [:=] J ( x , v ) →¬ SB → [ a := A ][ x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) [;] J ( x , v ) →¬ SB → [ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [?] J ( x , v ) → [? ¬ SB][ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [;] J ( x , v ) → [? ¬ SB; a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  51. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v SB ≡ 2 b ( m − x ) < v 2 +( A + b )( A ε 2 +2 ε v ) x m J ( x , v ) →¬ SB → ( A ε + v ) 2 ≤ 2 b ( m − A 2 ε 2 − v ε − x ) QE J ( x , v ) →¬ SB → ∀ t ≥ 0 ( t ≤ ε → ( At + v ) 2 ≤ 2 b ( m − A 2 t 2 − vt − x )) 2 t 2 + vt + x , At + v )) J ( x , v ) →¬ SB → ∀ t ≥ 0 ( t ≤ ε → J ( A 2 t 2 + vt + x ] J ( x , v )) [:=] J ( x , v ) →¬ SB → ∀ t ≥ 0 ( t ≤ ε → [ x := A [ ′ ] J ( x , v ) →¬ SB → [ x ′ = v , v ′ = A , t ′ = 1 & t ≤ ε ] J ( x , v ) [:=] J ( x , v ) →¬ SB → [ a := A ][ x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) [;] J ( x , v ) →¬ SB → [ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [?] J ( x , v ) → [? ¬ SB][ a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) [;] J ( x , v ) → [? ¬ SB; a := A ; ( x ′ = v , v ′ = a , t ′ = 1 & t ≤ ε )] J ( x , v ) CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  52. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v SB ≡ 2 b ( m − x ) < v 2 +( A + b )( A ε 2 +2 ε v ) x m � ( a := − b ∪ ? ¬ SB; a := A ); x ′′ = a , t ′ = 1 & t ≤ ε � ∗ ] J ( x , v ) ind J ( x , v ) → [ CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  53. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v SB ≡ 2 b ( m − x ) < v 2 +( A + b )( A ε 2 +2 ε v ) x m [;] J ( x , v ) → [( a := − b ∪ ? ¬ SB; a := A ); x ′′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) � ( a := − b ∪ ? ¬ SB; a := A ); x ′′ = a , t ′ = 1 & t ≤ ε � ∗ ] J ( x , v ) ind J ( x , v ) → [ CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  54. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v SB ≡ 2 b ( m − x ) < v 2 +( A + b )( A ε 2 +2 ε v ) x m [ ∪ ] J ( x , v ) → [ a := − b ∪ ? ¬ SB; a := A ][ x ′′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) [;] J ( x , v ) → [( a := − b ∪ ? ¬ SB; a := A ); x ′′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) � ( a := − b ∪ ? ¬ SB; a := A ); x ′′ = a , t ′ = 1 & t ≤ ε � ∗ ] J ( x , v ) ind J ( x , v ) → [ CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  55. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v SB ≡ 2 b ( m − x ) < v 2 +( A + b )( A ε 2 +2 ε v ) x m J ( x , v ) → [ a := − b ][ x ′′ = a . . ] J ( x , v ) ∧ [? ¬ SB; a := A ][ x ′′ = a . . ] J ( x , v ) [ ∪ ] J ( x , v ) → [ a := − b ∪ ? ¬ SB; a := A ][ x ′′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) [;] J ( x , v ) → [( a := − b ∪ ? ¬ SB; a := A ); x ′′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) � ( a := − b ∪ ? ¬ SB; a := A ); x ′′ = a , t ′ = 1 & t ≤ ε � ∗ ] J ( x , v ) ind J ( x , v ) → [ CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  56. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v SB ≡ 2 b ( m − x ) < v 2 +( A + b )( A ε 2 +2 ε v ) x m previous proofs for braking and acceleration J ( x , v ) → [ a := − b ][ x ′′ = a . . ] J ( x , v ) ∧ [? ¬ SB; a := A ][ x ′′ = a . . ] J ( x , v ) [ ∪ ] J ( x , v ) → [ a := − b ∪ ? ¬ SB; a := A ][ x ′′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) [;] J ( x , v ) → [( a := − b ∪ ? ¬ SB; a := A ); x ′′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) � ( a := − b ∪ ? ¬ SB; a := A ); x ′′ = a , t ′ = 1 & t ≤ ε � ∗ ] J ( x , v ) ind J ( x , v ) → [ CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  57. Example Proof: Safe Driving J ( x , v ) ≡ v 2 ≤ 2 b ( m − x ) v SB ≡ 2 b ( m − x ) < v 2 +( A + b )( A ε 2 +2 ε v ) x m previous proofs for braking and acceleration J ( x , v ) → [ a := − b ][ x ′′ = a . . ] J ( x , v ) ∧ [? ¬ SB; a := A ][ x ′′ = a . . ] J ( x , v ) [ ∪ ] J ( x , v ) → [ a := − b ∪ ? ¬ SB; a := A ][ x ′′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) [;] J ( x , v ) → [( a := − b ∪ ? ¬ SB; a := A ); x ′′ = a , t ′ = 1 & t ≤ ε ] J ( x , v ) � ( a := − b ∪ ? ¬ SB; a := A ); x ′′ = a , t ′ = 1 & t ≤ ε � ∗ ] J ( x , v ) ind J ( x , v ) → [ 1 Proof is essentially deterministic “follow your nose” 2 Synthesize invariant J ( , ) and parameter constraint SB 3 J ( x , v ) is a predicate symbol to prove only once and instantiate later CADE’15 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  58. Outline CPS are Multi-Dynamical Systems 1 Hybrid Systems Hybrid Games Dynamic Logic of Dynamical Systems 2 Syntax Semantics Example: Car Control Design Proofs for CPS 3 Compositional Proof Calculus Example: Safe Car Control Theory of CPS 4 Soundness and Completeness Differential Invariants Example: Elementary Differential Invariants Differential Axioms Applications 5 Summary 6 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 20 / 40

  59. Complete Proof Theory of Hybrid Systems Theorem (Sound & Complete) (J.Autom.Reas. 2008, LICS’12) d L calculus is a sound & complete axiomatization of hybrid systems relative to either differential equations or discrete dynamics. Proof 25pp Corollary (Complete Proof-theoretical Alignment & Bridging) proving continuous = proving hybrid = proving discrete JAutomReas’08,LICS’12 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 21 / 40

  60. Complete Proof Theory of Hybrid Systems Theorem (Sound & Complete) (J.Autom.Reas. 2008, LICS’12) d L calculus is a sound & complete axiomatization of hybrid systems relative to either differential equations or discrete dynamics. Proof 25pp Corollary (Complete Proof-theoretical Alignment & Bridging) proving continuous = proving hybrid = proving discrete Hybrid Continuous Discrete System JAutomReas’08,LICS’12 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 21 / 40

  61. Complete Proof Theory of Hybrid Systems Theorem (Sound & Complete) (J.Autom.Reas. 2008, LICS’12) d L calculus is a sound & complete axiomatization of hybrid systems relative to either differential equations or discrete dynamics. Proof 25pp Corollary (Complete Proof-theoretical Alignment & Bridging) proving continuous = proving hybrid = proving discrete Discrete Contin. Hybrid Theory Theory Theory Hybrid Continuous Discrete System JAutomReas’08,LICS’12 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 21 / 40

  62. Differential Invariants for Differential Equations Differential Invariant Differential Cut Differential Ghost x x ′ = f ( x ) 0 t DI ≥ DI ≥ , ∧ , ∨ DI ≥ , = , ∧ , ∨ Logic Math Character- DI = , ∧ , ∨ Provability DI = DI theory istic PDE DI > DI >, ∧ , ∨ DI >, = , ∧ , ∨ JLogComput’10,CAV’08,FMSD’09,LMCS’12,ITP’12 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 22 / 40

  63. Differential Invariants for Differential Equations Differential Invariant Differential Cut Differential Ghost x x ′ = f ( x ) 0 t DI ≥ DI ≥ , ∧ , ∨ DI ≥ , = , ∧ , ∨ Logic Math Character- DI = , ∧ , ∨ Provability DI = DI theory istic PDE DI > DI >, ∧ , ∨ DI >, = , ∧ , ∨ JLogComput’10,CAV’08,FMSD’09,LMCS’12,ITP’12 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 22 / 40

  64. Differential Invariants for Differential Equations Differential Invariant Differential Cut Differential Ghost x x ′ = f ( x ) 0 t DI ≥ DI ≥ , ∧ , ∨ DI ≥ , = , ∧ , ∨ Logic Math Character- DI = , ∧ , ∨ Provability DI = DI theory istic PDE DI > DI >, ∧ , ∨ DI >, = , ∧ , ∨ JLogComput’10,CAV’08,FMSD’09,LMCS’12,ITP’12 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 22 / 40

  65. Differential Invariants for Differential Equations Differential Invariant Differential Cut Differential Ghost x x ′ = f ( x ) 0 t DI ≥ DI ≥ , ∧ , ∨ DI ≥ , = , ∧ , ∨ Logic Math Character- DI = , ∧ , ∨ Provability DI = DI theory istic PDE DI > DI >, ∧ , ∨ DI >, = , ∧ , ∨ JLogComput’10,CAV’08,FMSD’09,LMCS’12,ITP’12 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 22 / 40

  66. Differential Invariants for Differential Equations Differential Invariant Differential Cut Differential Ghost x x ′ = f ( x ) 0 t DI ≥ DI ≥ , ∧ , ∨ DI ≥ , = , ∧ , ∨ Logic Math Character- DI = , ∧ , ∨ Provability DI = DI theory istic PDE DI > DI >, ∧ , ∨ DI >, = , ∧ , ∨ JLogComput’10,CAV’08,FMSD’09,LMCS’12,ITP’12 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 22 / 40

  67. Differential Invariants for Differential Equations Differential Invariant Differential Cut Differential Ghost x x ′ = f ( x ) 0 t DI ≥ DI ≥ , ∧ , ∨ DI ≥ , = , ∧ , ∨ Logic Math Character- DI = , ∧ , ∨ Provability DI = DI theory istic PDE DI > DI >, ∧ , ∨ DI >, = , ∧ , ∨ JLogComput’10,CAV’08,FMSD’09,LMCS’12,ITP’12 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 22 / 40

  68. Differential Invariants for Differential Equations Differential Invariant Differential Cut Differential Ghost x x ′ = f ( x ) 0 t DI ≥ DI ≥ , ∧ , ∨ DI ≥ , = , ∧ , ∨ Logic Math Character- DI = , ∧ , ∨ Provability DI = DI theory istic PDE DI > DI >, ∧ , ∨ DI >, = , ∧ , ∨ JLogComput’10,CAV’08,FMSD’09,LMCS’12,ITP’12 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 22 / 40

  69. Differential Invariants for Differential Equations Differential Invariant Differential Cut Differential Ghost x x ′ = f ( x ) 0 t DI ≥ DI ≥ , ∧ , ∨ DI ≥ , = , ∧ , ∨ Logic Math Character- DI = , ∧ , ∨ Provability DI = DI theory istic PDE DI > DI >, ∧ , ∨ DI >, = , ∧ , ∨ JLogComput’10,CAV’08,FMSD’09,LMCS’12,ITP’12 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 22 / 40

  70. Differential Invariants for Differential Equations Differential Invariant Differential Cut Differential Ghost y ′ = g ( x , y ) x x ′ = f ( x ) 0 t DI ≥ DI ≥ , ∧ , ∨ DI ≥ , = , ∧ , ∨ Logic Math Character- DI = , ∧ , ∨ Provability DI = DI theory istic PDE DI > DI >, ∧ , ∨ DI >, = , ∧ , ∨ JLogComput’10,CAV’08,FMSD’09,LMCS’12,ITP’12 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 22 / 40

  71. Differential Invariants for Differential Equations Differential Invariant Differential Cut Differential Ghost y ′ = g ( x , y ) x inv x ′ = f ( x ) 0 t DI ≥ DI ≥ , ∧ , ∨ DI ≥ , = , ∧ , ∨ Logic Math Character- DI = , ∧ , ∨ Provability DI = DI theory istic PDE DI > DI >, ∧ , ∨ DI >, = , ∧ , ∨ JLogComput’10,CAV’08,FMSD’09,LMCS’12,ITP’12 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 22 / 40

  72. Differential Invariants for Differential Equations Differential Invariant H → [ x ′ := f ( x )] F ′ F → [ x ′ = f ( x ) & H ] F Differential Cut F → [ x ′ = f ( x )] C F → [ x ′ = f ( x ) & C ] F F → [ x ′ = f ( x )] F y ′ = g ( x, y ) Differential Ghost G → [ x ′ = f ( x ) , y ′ = g ( x , y ) & H ] G F ↔ ∃ y G x inv F → [ x ′ = f ( x ) & H ] F x ′ = f ( x ) 0 t if new y ′ = g ( x , y ) has a global solution Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 23 / 40

  73. Differential Invariants for Differential Equations Differential Invariant H → [ x ′ := f ( x )] F ′ F → [ x ′ = f ( x ) & H ] F Differential Cut F → [ x ′ = f ( x ) & H ] C F → [ x ′ = f ( x ) & H ∧ C ] F F → [ x ′ = f ( x ) & H ] F y ′ = g ( x, y ) Differential Ghost G → [ x ′ = f ( x ) , y ′ = g ( x , y ) & H ] G F ↔ ∃ y G x inv F → [ x ′ = f ( x ) & H ] F x ′ = f ( x ) 0 t if new y ′ = g ( x , y ) has a global solution Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 23 / 40

  74. Differential Invariants for Differential Equations ω 2 x 2 + y 2 ≤ c 2 → [ x ′ = y , y ′ = − ω 2 x − 2 d ω y & ( ω ≥ 0 ∧ d ≥ 0)] ω 2 x 2 + y 2 ≤ c 2 1.0 x 0.5 1 2 3 4 5 6 y � 0.5 � 1.0 � 1.5 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 24 / 40

  75. Differential Invariants for Differential Equations ω ≥ 0 ∧ d ≥ 0 → [ x ′ := y ][ y ′ := − ω 2 x − 2 d ω y ]2 ω 2 xx ′ + 2 yy ′ ≤ 0 ω 2 x 2 + y 2 ≤ c 2 → [ x ′ = y , y ′ = − ω 2 x − 2 d ω y & ( ω ≥ 0 ∧ d ≥ 0)] ω 2 x 2 + y 2 ≤ c 2 1.0 x 0.5 1 2 3 4 5 6 y � 0.5 � 1.0 � 1.5 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 24 / 40

  76. Differential Invariants for Differential Equations ω ≥ 0 ∧ d ≥ 0 → 2 ω 2 xy + 2 y ( − ω 2 x − 2 d ω y ) ≤ 0 ω ≥ 0 ∧ d ≥ 0 → [ x ′ := y ][ y ′ := − ω 2 x − 2 d ω y ]2 ω 2 xx ′ + 2 yy ′ ≤ 0 ω 2 x 2 + y 2 ≤ c 2 → [ x ′ = y , y ′ = − ω 2 x − 2 d ω y & ( ω ≥ 0 ∧ d ≥ 0)] ω 2 x 2 + y 2 ≤ c 2 1.0 x 0.5 1 2 3 4 5 6 y � 0.5 � 1.0 � 1.5 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 24 / 40

  77. Differential Invariants for Differential Equations ∗ ω ≥ 0 ∧ d ≥ 0 → 2 ω 2 xy + 2 y ( − ω 2 x − 2 d ω y ) ≤ 0 ω ≥ 0 ∧ d ≥ 0 → [ x ′ := y ][ y ′ := − ω 2 x − 2 d ω y ]2 ω 2 xx ′ + 2 yy ′ ≤ 0 ω 2 x 2 + y 2 ≤ c 2 → [ x ′ = y , y ′ = − ω 2 x − 2 d ω y & ( ω ≥ 0 ∧ d ≥ 0)] ω 2 x 2 + y 2 ≤ c 2 1.0 x 0.5 1 2 3 4 5 6 y � 0.5 � 1.0 � 1.5 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 24 / 40

  78. Differential Invariants for Differential Equations ∗ ω ≥ 0 ∧ d ≥ 0 → 2 ω 2 xy + 2 y ( − ω 2 x − 2 d ω y ) ≤ 0 ω ≥ 0 ∧ d ≥ 0 → [ x ′ := y ][ y ′ := − ω 2 x − 2 d ω y ]2 ω 2 xx ′ + 2 yy ′ ≤ 0 ω 2 x 2 + y 2 ≤ c 2 → [ x ′ = y , y ′ = − ω 2 x − 2 d ω y & ( ω ≥ 0 ∧ d ≥ 0)] ω 2 x 2 + y 2 ≤ c 2 1.0 x 0.5 1 2 3 4 5 6 y � 0.5 � 1.0 � 1.5 Andr´ e Platzer (CMU) Foundations of Cyber-Physical Systems AVACS 24 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend