foundations of chemical kinetics lecture 23 the chemical
play

Foundations of Chemical Kinetics Lecture 23: The chemical master - PowerPoint PPT Presentation

Foundations of Chemical Kinetics Lecture 23: The chemical master equation: Stationary distributions Marc R. Roussel Department of Chemistry and Biochemistry The stationary distribution In ordinary chemical kinetics, a closed chemical


  1. Foundations of Chemical Kinetics Lecture 23: The chemical master equation: Stationary distributions Marc R. Roussel Department of Chemistry and Biochemistry

  2. The stationary distribution ◮ In ordinary chemical kinetics, a closed chemical system has a unique equilibrium composition, usually given as a set of concentrations.

  3. The stationary distribution ◮ In ordinary chemical kinetics, a closed chemical system has a unique equilibrium composition, usually given as a set of concentrations. ◮ In stochastic kinetics, we have a stationary (i.e. equilibrium) probability distribution.

  4. The stationary distribution ◮ In ordinary chemical kinetics, a closed chemical system has a unique equilibrium composition, usually given as a set of concentrations. ◮ In stochastic kinetics, we have a stationary (i.e. equilibrium) probability distribution. ◮ The stationary distribution is calculated from the chemical master equation by setting dP ( N ) / dt = 0 and requiring � P ( N ) = 1.

  5. The stationary distribution (continued) ◮ Recall the chemical master equation: dP ( N , t ) � � = a r ( N − ν r ) P ( N − ν r , t ) − a r ( N ) P ( N , t ) dt r ∈R r ∈R � [ a r ( N − ν r ) P ( N − ν r , t ) − a r ( N ) P ( N , t )] = r ∈R

  6. The stationary distribution (continued) ◮ Recall the chemical master equation: dP ( N , t ) � � = a r ( N − ν r ) P ( N − ν r , t ) − a r ( N ) P ( N , t ) dt r ∈R r ∈R � [ a r ( N − ν r ) P ( N − ν r , t ) − a r ( N ) P ( N , t )] = r ∈R ◮ Suppose that we split R into two sets: the set of “forward” reactions R + , and the set of “reverse” reactions R − , and that the reverse of every reaction in R + is included in R − . Let a (+) be the propensity for forward reaction r , and a ( − ) be r r the propensity for the corresponding reverse reaction. ν r is the stoichiometry vector for the forward reaction.

  7. The stationary distribution (continued) ◮ Then we can write the CME as

  8. The stationary distribution (continued) ◮ Then we can write the CME as dP ( N , t ) � � a (+) ( N − ν r ) P ( N − ν r , t ) − a (+) � = ( N ) P ( N , t ) r r dt r ∈R + � a ( − ) ( N + ν r ) P ( N + ν r , t ) − a ( − ) � � + ( N ) P ( N , t ) r r r ∈R −

  9. The stationary distribution (continued) ◮ Then we can write the CME as dP ( N , t ) � � a (+) ( N − ν r ) P ( N − ν r , t ) − a (+) � = ( N ) P ( N , t ) r r dt r ∈R + � a ( − ) ( N + ν r ) P ( N + ν r , t ) − a ( − ) � � + ( N ) P ( N , t ) r r r ∈R − �� a (+) ( N − ν r ) P ( N − ν r , t ) − a ( − ) � � = ( N ) P ( N , t ) r r r ∈R + � �� a ( − ) ( N + ν r ) P ( N + ν r , t ) − a (+) + ( N ) P ( N , t ) r r

  10. The stationary distribution (continued) ◮ Then we can write the CME as dP ( N , t ) � � a (+) ( N − ν r ) P ( N − ν r , t ) − a (+) � = ( N ) P ( N , t ) r r dt r ∈R + � a ( − ) ( N + ν r ) P ( N + ν r , t ) − a ( − ) � � + ( N ) P ( N , t ) r r r ∈R − �� a (+) ( N − ν r ) P ( N − ν r , t ) − a ( − ) � � = ( N ) P ( N , t ) r r r ∈R + � �� a ( − ) ( N + ν r ) P ( N + ν r , t ) − a (+) + ( N ) P ( N , t ) r r ◮ For a detailed balanced solution, each bracketed pair of terms would be zero.

  11. Example: Stationary distribution for the Michaelis-Menten mechanism κ 1 κ 2 − − ⇀ − − ⇀ E + S ↽ κ − 1 C − − ↽ κ − 2 E + P − −

  12. Example: Stationary distribution for the Michaelis-Menten mechanism κ 1 κ 2 − − ⇀ − − ⇀ E + S ↽ κ − 1 C − − ↽ κ − 2 E + P − − Variable ordering: ( N C , N E , N P , N S )

  13. Example: Stationary distribution for the Michaelis-Menten mechanism κ 1 κ 2 − − ⇀ − − ⇀ E + S ↽ κ − 1 C − − ↽ κ − 2 E + P − − Variable ordering: ( N C , N E , N P , N S ) dP ( N , t ) = κ 1 ( N E + 1)( N S + 1) P ( N C − 1 , N E + 1 , N P , N S + 1) dt + κ − 1 ( N C + 1) P ( N C + 1 , N E − 1 , N P , N S − 1) + κ 2 ( N C + 1) P ( N C + 1 , N E − 1 , N P − 1 , N S ) + κ − 2 ( N E + 1)( N P + 1) P ( N C − 1 , N E + 1 , N P + 1 , N S ) − P ( N C , N E , N P , N S ) [ κ 1 N E N S + κ − 1 N C + κ 2 N C + κ − 2 N E N P ]

  14. Example: Stationary distribution for the Michaelis-Menten mechanism κ 1 κ 2 − − ⇀ − − ⇀ E + S ↽ κ − 1 C − − ↽ κ − 2 E + P − − Variable ordering: ( N C , N E , N P , N S ) dP ( N , t ) = κ 1 ( N E + 1)( N S + 1) P ( N C − 1 , N E + 1 , N P , N S + 1) dt + κ − 1 ( N C + 1) P ( N C + 1 , N E − 1 , N P , N S − 1) + κ 2 ( N C + 1) P ( N C + 1 , N E − 1 , N P − 1 , N S ) + κ − 2 ( N E + 1)( N P + 1) P ( N C − 1 , N E + 1 , N P + 1 , N S ) − P ( N C , N E , N P , N S ) [ κ 1 N E N S + κ − 1 N C + κ 2 N C + κ − 2 N E N P ]

  15. Example: Stationary distribution for the Michaelis-Menten mechanism κ 1 κ 2 − − ⇀ − − ⇀ E + S ↽ κ − 1 C − − ↽ κ − 2 E + P − − Variable ordering: ( N C , N E , N P , N S ) dP ( N , t ) = κ 1 ( N E + 1)( N S + 1) P ( N C − 1 , N E + 1 , N P , N S + 1) dt + κ − 1 ( N C + 1) P ( N C + 1 , N E − 1 , N P , N S − 1) + κ 2 ( N C + 1) P ( N C + 1 , N E − 1 , N P − 1 , N S ) + κ − 2 ( N E + 1)( N P + 1) P ( N C − 1 , N E + 1 , N P + 1 , N S ) − P ( N C , N E , N P , N S ) [ κ 1 N E N S + κ − 1 N C + κ 2 N C + κ − 2 N E N P ]

  16. Example: Stationary distribution for the Michaelis-Menten mechanism κ 1 κ 2 − − ⇀ − − ⇀ E + S ↽ κ − 1 C − − ↽ κ − 2 E + P − − Variable ordering: ( N C , N E , N P , N S ) dP ( N , t ) = κ 1 ( N E + 1)( N S + 1) P ( N C − 1 , N E + 1 , N P , N S + 1) dt + κ − 1 ( N C + 1) P ( N C + 1 , N E − 1 , N P , N S − 1) + κ 2 ( N C + 1) P ( N C + 1 , N E − 1 , N P − 1 , N S ) + κ − 2 ( N E + 1)( N P + 1) P ( N C − 1 , N E + 1 , N P + 1 , N S ) − P ( N C , N E , N P , N S ) [ κ 1 N E N S + κ − 1 N C + κ 2 N C + κ − 2 N E N P ]

  17. Example: Stationary distribution for the Michaelis-Menten mechanism κ 1 κ 2 − − ⇀ − − ⇀ E + S ↽ κ − 1 C − − ↽ κ − 2 E + P − − Variable ordering: ( N C , N E , N P , N S ) dP ( N , t ) = κ 1 ( N E + 1)( N S + 1) P ( N C − 1 , N E + 1 , N P , N S + 1) dt + κ − 1 ( N C + 1) P ( N C + 1 , N E − 1 , N P , N S − 1) + κ 2 ( N C + 1) P ( N C + 1 , N E − 1 , N P − 1 , N S ) + κ − 2 ( N E + 1)( N P + 1) P ( N C − 1 , N E + 1 , N P + 1 , N S ) − P ( N C , N E , N P , N S ) [ κ 1 N E N S + κ − 1 N C + κ 2 N C + κ − 2 N E N P ]

  18. Example: Stationary distribution for the Michaelis-Menten mechanism (continued) ◮ For example, suppose that we start out with one enzyme molecule and three substrate molecules, and take κ 1 = 10, κ − 1 = 1, κ 2 = 5 and κ − 2 = 2 s − 1 .

  19. Example: Stationary distribution for the Michaelis-Menten mechanism (continued) ◮ For example, suppose that we start out with one enzyme molecule and three substrate molecules, and take κ 1 = 10, κ − 1 = 1, κ 2 = 5 and κ − 2 = 2 s − 1 . dP (0 , 1 , 0 , 3) / dt = P (1 , 0 , 0 , 2) − 30 P (0 , 1 , 0 , 3) dP (1 , 0 , 0 , 2) / dt = 30 P (0 , 1 , 0 , 3) + 2 P (0 , 1 , 1 , 2) − 6 P (1 , 0 , 0 , 2) dP (0 , 1 , 1 , 2) / dt = P (1 , 0 , 1 , 1) + 5 P (1 , 0 , 0 , 2) − 22 P (0 , 1 , 1 , 2) dP (1 , 0 , 1 , 1) / dt = 20 P (0 , 1 , 1 , 2) + 4 P (0 , 1 , 2 , 1) − 6 P (1 , 0 , 1 , 1) dP (0 , 1 , 2 , 1) / dt = P (1 , 0 , 2 , 0) + 5 P (1 , 0 , 1 , 1) − 14 P (0 , 1 , 2 , 1) dP (1 , 0 , 2 , 0) / dt = 10 P (0 , 1 , 2 , 1) + 6 P (0 , 1 , 3 , 0) − 6 P (1 , 0 , 2 , 0) dP (0 , 1 , 3 , 0) / dt = 5 P (1 , 0 , 2 , 0) − 6 P (0 , 1 , 3 , 0)

  20. Example: Stationary distribution for the Michaelis-Menten mechanism (continued) ◮ Solving these equations with � P ( N C , N E , N P , N S ) = 1, we get P (0 , 1 , 0 , 3) = 3 × 10 − 5 P (0 , 1 , 2 , 1) = 0 . 0495 P (1 , 0 , 0 , 2) = 8 × 10 − 4 P (1 , 0 , 2 , 0) = 0 . 4953 P (0 , 1 , 1 , 2) = 2 . 0 × 10 − 3 P (0 , 1 , 3 , 0) = 0 . 4127 P (1 , 0 , 1 , 1) = 0 . 0396

  21. Example: Stationary distribution for the Michaelis-Menten mechanism (continued) ◮ Solving these equations with � P ( N C , N E , N P , N S ) = 1, we get P (0 , 1 , 0 , 3) = 3 × 10 − 5 P (0 , 1 , 2 , 1) = 0 . 0495 P (1 , 0 , 0 , 2) = 8 × 10 − 4 P (1 , 0 , 2 , 0) = 0 . 4953 P (0 , 1 , 1 , 2) = 2 . 0 × 10 − 3 P (0 , 1 , 3 , 0) = 0 . 4127 P (1 , 0 , 1 , 1) = 0 . 0396 Note: There is not a unique steady-state composition.

  22. Example: Stationary distribution for the Michaelis-Menten mechanism (continued) ◮ Does the solution obey detailed balance? If so, we should have κ 1 N E N S P ( N C , N E , N P , N S ) = κ − 1 ( N 1 + 1) P ( N C + 1 , N E − 1 , N P , N S − 1) κ 2 N C P ( N C , N E , N P , N S ) = κ − 2 ( N E + 1)( N P + 1) P ( N C − 1 , N E + 1 , N P + 1 , N S ) for all values of ( N C , N E , N P , N S ) where these equations make sense.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend