foundations of algebraic surgery
play

Foundations of algebraic surgery ANDREW RANICKI (Edinburgh) - PDF document

Foundations of algebraic surgery ANDREW RANICKI (Edinburgh) http://www.maths.ed.ac.uk/ aa r An n -dimensional manifold M determines an n -dimensional cellula r f.g. free ab elian group chain complex ) d ) d . . . d ( M


  1. Foundations of algebraic surgery ANDREW RANICKI (Edinburgh) http://www.maths.ed.ac.uk/ � aa r • An n -dimensional manifold M determines an n -dimensional cellula r f.g. free ab elian group chain complex ) d ) d → . . . d ( M ) : C n ( M ( M ( M ) C − → C n − − − → C 1 0 with a P oinca r � e dualit y chain equivalence ) n −∗ ≃ C C ( M ( M ) . • The homology e�ect of a geometric surgery on a manifold M is given b y an algeb raic surgery on the chain complex C ( M ). 1

  2. The algeb raic surgery machine • The algeb raic pa rt of the machine stud- ies chain complexes with P oinca r � e dualit y , which a re quadratic fo rms on chain com- plexes. Algeb raic surgery on such objects mo dels the surgery of manifolds and no r- mal maps. • The geometric pa rt reduces top ological surgery p roblems to algeb raic ones. • F o r n -dimensional no rmal maps with n ≥ 5 there is a one-one co rresp ondence b et w een algeb raic and geometric surgery b elo w and in the middle dimensions. 2

  3. Symmetric and quadratic P oinca r � e dualit y • General theo ry applies to chain complexes C over any ring with involution A . There y C n −∗ ≃ C a re t w o t yp es of P oinca r � e dualit , co rresp onding to t yp e I and t yp e I I sym- metric fo rms. • Use symmetric P oinca r � e dualit y fo r surgery on manifolds. In general, cannot realize symmetric P oinca r � e surgeries on manifolds. • Use quadratic P oinca r � e dualit y fo r surgery on no rmal maps. • Theo rem The W all surgery obstruction group ( Z [ π ]) is the cob o rdism group of n -dimensional L n quadratic P oinca r � e complexes over Z [ π ]. 3

  4. Geometric surgery • The n -dimensional manifold obtained from an n -dimensional manifold M b y surgery on S i × D n − i ⊂ M is ( M \ S i × D n − i ) ∪ D i +1 × S n − i − 1 . M ′ = Call this the e�ect of the surgery . obtain M ′ • Can from M b y surgery on D i +1 × S n − i − 1 ⊂ M ′ . ( D i +1 × D n − i View S n • Example = ∂ ) as = S i × D n − i ∪ D i +1 × S n − i − 1 . S n on S i × D n − i ⊂ S n Surgery gives 1 . D i +1 × S n − i − 1 ∪ D i +1 × S n − i − 1 = S i +1 × S n − i − 4

  5. Cob o rdism e�ect of surgery on S i × D n − i ⊂ M • The trace of surgery with e�ect M ′ ; M, M ′ is the cob o rdism ( W ) obtained from M × [0 , 1] b y attaching an ( i + 1)-handle at S i × D n − i × { 1 } ⊂ M × { 1 } 1] ∪ D i +1 × D n − i . W = M × [0 , • Theo rem (Thom, Milno r) Every ( n +1)-dimensional cob o rdism ( L ; M, N ) is a union of the traces of surgeries. Pro of A Mo rse function f : ( L ; M, N ) → ([0 , 1]; { 0 } , { 1 } ) determines a handle decomp osition of L on M n +1 � � D k × D n +1 − k L = M × [0 , 1] ∪ k =0 with one k -handle fo r each critical p oint of in- dex k . 5

  6. Homotop y e�ect of surgery : S i → M The mapping cone of a map x is • space M ∪ x D i +1 the adjunction obtained from M b y attaching an ( i + 1)-cell. ; M, M ′ • Prop osition If ( W ) is the trace of a on S i × D n − i ⊂ M surgery there a re de�ned homotop y equivalences ≃ M ∪ x D i +1 ≃ M ′ ∪ x ′ D n − i W = S i × { 0 } ⊂ S i × D n − i ⊂ M : S i with x . • Surgery on an n -dimensional manifold at- taches an ( i + 1)-cell and then detaches an ( n − i )-cell. ; S n , S i +1 × S n − i − 1 • Example The trace ( W ) on S i × D n − i ⊂ S n of the surgery has ≃ S n ∨ S i +1 . W 6

  7. Homology e�ect of attaching a cell • The algeb raic mapping cone of a chain map f : C → D is the chain complex C ( f ) with � � d C 0 C ( f ) r = C r − 1 ⊕ D r , d C = . ( f ) ± f d D • F o r i ≥ 0 de�ne the chain complex S i Z : · · · → 0 → Z → 0 → . . . concentrated in dimension i . • The homology e�ect of attaching an : S i → M ( i + 1)-cell to M at x is to attach an algeb raic ( i + 1)-cell to C ( M ) : = M ∪ x D i +1 if W then : S i Z → C C ( W ) = C ( x ( M )) In pa rticula r, H i ( W ) = H i ( M ) / � x � is ob- • tained from H i ( M ) b y killing x ∈ H i ( M ). 7

  8. Homology e�ect of surgery ; M, M ′ • If ( W ) is the trace of a surgery on S i × D n − i ⊂ M then there a re de�ned chain equivalences : S i Z → C C ( W ) ≃ C ( x ( M )) ( x ′ : S n − i − 1 Z → C ( M ′ ( W ) ≃ C )) . C ( M ′ ) obtained from C ( M ) b y an algeb raic • C surgery which kills x ∈ H i ( M ), b y �rst at- taching an algeb raic ( i + 1)-cell and then detaching an algeb raic ( n − i )-cell. • Need P oinca r � e dualit y to describ e the re- and x ′ ∈ lationship b et w een x ∈ H i ( M ) ( M ′ H n − i − ). 1 8

  9. P oinca r � e dualit y Cap p ro duct with fundamental class [ M ] ∈ • H n ( M ) is a chain equivalence ) n −∗ → C [ M ] ∩ − : C ( M ( M ) inducing the P oinca r � e dualit y isomo rphisms ) ∼ H n −∗ ( M = H ∗ ( M ) . • P oinca r � e-Lefschetz dualit y fo r any cob o r- ; M, M ′ dism ( W ) ) ∼ H n +1 −∗ ( W, M ′ ( W, M = H ∗ ) . • Can use P oinca r � e dualit y to decide which elements in H i ( M ) can b e rep resented b y S i × D n − i ⊂ M and so killed b y surgery . Rega rding dualit y as a quadratic fo rm, can only kill isotropic elements. 9

  10. Principle of Algeb raic Surgery • F o r any cob o rdism of n -dimensional mani- ; M, M ′ folds ( W ) the chain homotop y t yp e ( M ′ of C ) and its P oinca r � e dualit y can b e obtained from the chain homotop y t yp e of C ( M ) and { its P oinca r � e dualit y the chain homotop y class of the chain { ( W, M ′ map j : C ( M ) → C ) ( W, M ′ { j [ M ] = 0 ∈ H n ) on the chain level using algeb raic surgery on symmetric P oinca r � e complexes. • An algeb raic surgery co rresp onds to a se- quence of geometric surgeries. 10

  11. Symmetric P oinca r � e complexes • An n -dimensional symmetric P oinca r � e complex ( C, φ ) is an n -dimensional f.g. free chain complex C with mo rphisms : C r φ s = Hom Z ( C r , Z ) → C n − r ( s ≥ 0) + s such that (up to signs) : C r → C n − r + φ s d ∗ + φ ∗ dφ s + φ s − = 0 1 + s − 1 s − 1 with s ≥ 0, φ − = 0 and 1 : C n −∗ φ = Hom Z ( C, Z ) n −∗ → C 0 is a chain equivalence. • Symmetric fo rm on chain complex. Theo rem (Mishchenk o) An n -dimensional • manifold M determines an n -dimensional symmetric P oinca r � e complex ( C ( M ) , φ ), with ≃ ) n −∗ φ = [ M ] ∩ − : C ( M − → C ( M ) 0 11

  12. Symmetric algeb raic surgery • An algeb raic surgery on ( C, φ ) has input a chain map j : C → D with chain homotop y 0 j ∗ ≃ : D n −∗ → D . δφ : jφ 0 0 The e�ect is the n -dimensional symmetric ( C ′ , φ ′ P oinca r � e complex ) with +1 , C ′ +1 ⊕ D n − r = C r ⊕ D r r   0 j ∗ d C 0 ± φ   d C ′ = ± j d D δφ   0 ) ∗ 0 0 ( d D • Generalization of the op eration which re- = λ ∗ places a symmetric fo rm ( K, λ : K → K ∗ ) fo r any x ∈ K with λ ( x )( x ) = 0 (isotropic) b y the sub quotient fo rm ( K ′ , λ ′ ) = ( { y ∈ K | λ ( x )( y ) = 0 } / � x � , [ λ ]) 12

  13. Algeb raic and geometric surgery on S i × D n − i ⊂ M • Surgery determines al- geb raic surgery on ( C ( M ) , φ ) with input ) → S n − i Z j : C ( M a co cycle rep resenting dual j ∈ H n − i the P oinca r � e ( M ) of x = [ S i ] ∈ H i ( M ), and δφ determined b y fram- of S i ⊂ M ing . • Theo rem The symmetric P oinca r � e complex ( M ′ ) , φ ′ e�ect M ′ ( C ) of the geometric is the e�ect of the algeb raic surgery on ( C ( M ) , φ ). • Exercise W o rk out the algeb raic surgery co rresp onding to the geometric surgery on S i × D n − i ⊂ S n e�ect S i +1 × S n − i − 1 with . 13

  14. The algeb raic e�ect of a surgery • The Theo rem is an example of the Alge- b raic Surgery Principle in action. ; M, M ′ on S i × • If ( W ) is the trace of surgery D n − i ⊂ M then ( W, M ′ ) ≃ S n − i Z . j : C ( M ) → C • W rite C ( M ) = C , and let x ∈ C i b e cycle = j ∈ C n − i b eing killed, y the dual co cycle. ( M ′ • The chain complex C ) is chain equiva- lent to d ⊕ y 1 ⊕ Z d ⊕ 0 C ′ : · · · → C n − i − − → C n − i − − − − → C n − i − 2 0 d ⊕ → C i +1 ⊕ Z d ⊕ x → · · · → C i +2 − − − − − − → C i → . . . 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend