formulating electroweak pion decays in functional methods
play

Formulating electroweak pion decays in functional methods and the - PowerPoint PPT Presentation

Formulating electroweak pion decays in functional methods and the influence of CP-violation. Walid Ahmed Mian Advisor: Axel Maas and Jan M. Pawlowski June 20th, 2017 W. Ah. Mian EW pion decay in FM June 20th, 2017 1 / 31 Outline Motivation


  1. Formulating electroweak pion decays in functional methods and the influence of CP-violation. Walid Ahmed Mian Advisor: Axel Maas and Jan M. Pawlowski June 20th, 2017 W. Ah. Mian EW pion decay in FM June 20th, 2017 1 / 31

  2. Outline Motivation 1 Quark Propagator with broken Flavor and CP-Violation 2 Bethe-Salpeter Equation of the weak pion decay 3 Conclusion 4 W. Ah. Mian EW pion decay in FM June 20th, 2017 2 / 31

  3. Binary Neutron Stars Mergers System of binary neutron stars mergers Source of gravitational waves Possible outcome: neutron star or black hole Depends on neutrino backcoupling, magnetic field etc. (Y. Sekiguchi et al. PRL 107 (2011), 051102 (http://www.ligo.org/science/GW-Inspiral.php) O. L. Caballero arXiv:1603.02755 [nucl-th] Foucart et al. arXiv:1510.06398v2 [astro-ph] Rosswog et al. arXiv:0302301v1 [astro-ph] . . . ) W. Ah. Mian EW pion decay in FM June 20th, 2017 3 / 31

  4. Binary Neutron Stars Mergers System of binary neutron stars mergers Source of gravitational waves Possible outcome: neutron star or black hole Depends on neutrino backcoupling, magnetic field etc. (Y. Sekiguchi et al. PRL 107 (2011), 051102 (http://www.ligo.org/science/GW-Inspiral.php) O. L. Caballero arXiv:1603.02755 [nucl-th] Foucart et al. arXiv:1510.06398v2 [astro-ph] Rosswog et al. arXiv:0302301v1 [astro-ph] . . . ) W. Ah. Mian EW pion decay in FM June 20th, 2017 3 / 31

  5. Binary Neutron Stars Mergers System of binary neutron stars mergers Source of gravitational waves Possible outcome: neutron star or black hole Depends on neutrino backcoupling, magnetic field etc. (Y. Sekiguchi et al. PRL 107 (2011), 051102 (http://www.ligo.org/science/GW-Inspiral.php) O. L. Caballero arXiv:1603.02755 [nucl-th] Foucart et al. arXiv:1510.06398v2 [astro-ph] Rosswog et al. arXiv:0302301v1 [astro-ph] . . . ) W. Ah. Mian EW pion decay in FM June 20th, 2017 3 / 31

  6. Binary Neutron Stars Mergers Micro physics influence gravitational waves Very high neutrino flux Super/Hyper-Kamiokande have good sensitivity Measurement shows the inner structure of the neutron star mergers (Y. Sekiguchi et al. PRL 107 (2011), 051102 O. L. Caballero arXiv:1603.02755 [nucl-th] Foucart et al. arXiv:1510.06398v2 [astro-ph] Rosswog et al. arXiv:0302301v1 [astro-ph] . . . ) (Foucart et al. arXiv:1510.06398v2 [astro-ph]) W. Ah. Mian EW pion decay in FM June 20th, 2017 4 / 31

  7. Back Coupling Neutrinos Very dense matter ⇒ opaque for neutrinos Reaction inside the core (Foucart et al. arXiv:1510.06398v2 [astro-ph]) → p + e − ν e + n ← → n + e + ν e + p ← → e + + e − ν e + ν e ← ν e + ν e ← → γ Electroweak interactions play an important role Consider QCD + electroweak interactions non-perturbative W. Ah. Mian EW pion decay in FM June 20th, 2017 5 / 31

  8. β -decay Full resolution of electroweak interactions is complicated β -decay captures the main features Look at the π ± -decay Electroweak interactions approximate by 4-Fermi-interaction Electroweak interactions violates parity No results on non-perturbative backcoupling of C and P violation First: Investigate the effects on the simplest object: Quark propagator Analyse influence through explicit http://hyperphysics.phy- astr.gsu.edu/hbase/particles/proton.html breaking term (A. Maas & W. M., EPJA (2017) 53 : 22 , arxiv:1611:08130) W. Ah. Mian EW pion decay in FM June 20th, 2017 6 / 31

  9. β -decay Full resolution of electroweak interactions is complicated β -decay captures the main features d ν Look at the π ± -decay Electroweak interactions approximate by 4-Fermi-interaction Electroweak interactions violates parity No results on non-perturbative backcoupling of C and P violation First: Investigate the effects on the simplest object: Quark propagator e u Analyse influence through explicit breaking term (A. Maas & W. M., EPJA (2017) 53 : 22 , arxiv:1611:08130) W. Ah. Mian EW pion decay in FM June 20th, 2017 6 / 31

  10. β -decay Full resolution of electroweak d ν interactions is complicated β -decay captures the main features Look at the π ± -decay Electroweak interactions approximate by 4-Fermi-interaction Electroweak interactions violates parity No results on non-perturbative e u backcoupling of C and P violation First: Investigate the effects on the ↓ simplest object: Quark propagator Analyse influence through explicit breaking term (A. Maas & W. M., EPJA (2017) 53 : 22 , arxiv:1611:08130) W. Ah. Mian EW pion decay in FM June 20th, 2017 6 / 31

  11. Quark Propagator Symmetry breaking ⇒ More involved tensor structure Pure QCD: P ( p 2 ) = ˜ A ( p 2 ) i / p + ˜ B ( p 2 )1 1 Parity violation: p γ 5 + ˜ P ( p 2 ) = ˜ p + ˜ 1 + ˜ A ( p 2 ) i / B ( p 2 )1 C ( p 2 ) i / D ( p 2 ) γ 5 Flavor and parity violation: p γ 5 + ˜ P AB ( p 2 ) = ˜ p + ˜ 1 + ˜ A AB ( p 2 ) i / B AB ( p 2 )1 C AB ( p 2 ) i / D AB ( p 2 ) γ 5 W. Ah. Mian EW pion decay in FM June 20th, 2017 7 / 31

  12. Quark Propagator and its inverse Pure QCD: P − 1 ( p 2 ) = − A ( p 2 ) i / p + B ( p 2 )1 1 P ( p 2 ) = ˜ A ( p 2 ) i / p + ˜ B ( p 2 )1 1 A ( p 2 ) Z ( p 2 ) A ( p 2 ) = ˜ A 2 ( p 2 ) p 2 + B 2 ( p 2 ) = p 2 + M 2 ( p 2 ) B ( p 2 ) M ( p 2 ) ˜ B ( p 2 ) = A 2 ( p 2 ) p 2 + B 2 ( p 2 ) = p 2 + M 2 ( p 2 ) Wavefunctionrenormalization and Massfunction: M ( p 2 ) = B ( p 2 ) 1 Z ( p 2 ) = A ( p 2 ) A ( p 2 ) W. Ah. Mian EW pion decay in FM June 20th, 2017 8 / 31

  13. Quark Propagator and its inverse Flavor and parity violation: p γ 5 + D AB ( p 2 ) γ 5 P − 1 AB ( p 2 ) = − A AB ( p 2 ) i / p + B AB ( p 2 )1 1 + C AB ( p 2 ) i / p γ 5 + ˜ P AB ( p 2 ) = ˜ p + ˜ 1 + ˜ A AB ( p 2 ) i / B AB ( p 2 )1 C AB ( p 2 ) i / D AB ( p 2 ) γ 5 Complicated and very lengthy relation: A AB = ˜ ˜ A AB ( A CD , B CD , C CD , D CD ) W. Ah. Mian EW pion decay in FM June 20th, 2017 9 / 31

  14. Tree-level Propagator 1 w p 2 i / P 0 , uu ( p 2 ) = ( m 2 d + (1 − 2 g 2 w ) p 2 ) i / p + m u ( m 2 d + p 2 )1 1 + 2 g 2 p γ 5 � � N ( p 2 ) g w P 0 , ud ( p 2 ) = ( m u m d − p 2 ) i / p − ( m u + m d ) p 2 1 1 − ( m u m d + p 2 ) i / p γ 5 � � N ( p 2 ) − g w ( m u − m d ) p 2 γ 5 N ( p 2 ) d ) p 2 + (1 − 4 g 2 N ( p 2 ) = m 2 d m 2 u + ( m 2 u + m 2 w ) p 4 Pseudo scalar channel of the mixed propagator (tree-level) is proportional to mass splitting W. Ah. Mian EW pion decay in FM June 20th, 2017 10 / 31

  15. DSEs DSEs: Equation of motion for the correlation functions Pure QCD: − 1 − 1 = + d 4 q � P − 1 ( p 2 ) = P − 1 (2 π ) 4 g γ ν S νµ ( q − p ) P ( q 2 )Γ µ ( p , q ) + 0 Rainbow-Truncation gS νµ ( q − p )Γ µ ( p , q ) ∝ α (( p − q ) 2 ) S 0 ,νµ ( q − p ) γ µ W. Ah. Mian EW pion decay in FM June 20th, 2017 11 / 31

  16. DSEs DSEs: Equation of motion for the correlation functions Pure QCD: − 1 − 1 = + d 4 q � P − 1 ( p 2 ) = P − 1 (2 π ) 4 g γ ν S νµ ( q − p ) P ( q 2 )Γ µ ( p , q ) + 0 Rainbow-Truncation gS νµ ( q − p )Γ µ ( p , q ) ∝ α (( p − q ) 2 ) S 0 ,νµ ( q − p ) γ µ W. Ah. Mian EW pion decay in FM June 20th, 2017 11 / 31

  17. Maris-Tandy Coupling 2 πγ m [1 − exp ( − q 2 t )] α ( q 2 ) = π ω 6 Dq 4 e − q 2 m 2 ω 2 + ln[e 2 − 1 + (1 + q 2 QCD ) 2 ] Λ 2 12 Λ QCD =0 . 234 GeV 10 ω =0 . 4 GeV 8 D =0 . 93 GeV 6 m t =1 . 0 GeV 4 12 γ m = 2 11 N c − 2 N f 0 12 1e-06 1e-04 1e-02 1 100 10000 1e+06 1e+08 = p 2 [GeV 2 ] 11 · 3 − 2 · 2 ( P. Maris and P. C. Tandy, PRC 60, 055214 (1999)) W. Ah. Mian EW pion decay in FM June 20th, 2017 12 / 31

  18. Wavefunctionrenormalization 1 chiral up 0.95 down strange charm 0.9 bottom top 0.85 Z ( p 2 ) 0.8 0.75 0.7 0.65 0.6 1e-06 0.0001 0.01 1 100 10000 1e+06 p 2 [GeV 2 ] W. Ah. Mian EW pion decay in FM June 20th, 2017 13 / 31

  19. Massfunction 1 chiral up 0.1 down strange M ( p 2 ) [GeV] 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-06 0.0001 0.01 1 100 10000 1e+06 p 2 [GeV 2 ] W. Ah. Mian EW pion decay in FM June 20th, 2017 14 / 31

  20. DSEs   − 1 − 1             = +               Weak interaction: Non-vanishing diagonal elements By inversion: Quark propagators of different flavor influence each other W. Ah. Mian EW pion decay in FM June 20th, 2017 15 / 31

  21. Axial channel chiral 0.2 g w =0 g w =0.01 0 g w =0.1 Positive in UV g w =0.2 -0.2 g w =0.3 ~(p 2 ) [1/GeV 2 ] g w =0.4 -0.4 -0.6 -0.8 Negative in IR C Existence of a transition scale -1 -1.2 -1.4 10 -6 10 -4 10 -2 10 2 10 4 10 6 10 8 1 p 2 [GeV 2 ] W. Ah. Mian EW pion decay in FM June 20th, 2017 16 / 31

  22. Axial channel m u =2.3MeV and m d =4.8MeV, g w =10 -5 1x10 -10 up down 0 -1x10 -10 ~(p 2 ) [1/GeV 2 ] -2x10 -10 Same behavior as in the chiral limit -3x10 -10 C -4x10 -10 -5x10 -10 -6x10 -10 10 -6 10 -4 10 -2 10 2 10 4 10 6 10 8 1 p 2 [GeV 2 ] W. Ah. Mian EW pion decay in FM June 20th, 2017 17 / 31

  23. Axial channel m u =2.3MeV and m d =4.8MeV, g w =5x10 -5 2x10 -8 up down 1x10 -8 ~(p 2 ) [1/GeV 2 ] 0 -1x10 -8 Existence of a threshold strength: Qualitative change -2x10 -8 C -3x10 -8 -4x10 -8 10 -6 10 -4 10 -2 10 2 10 4 10 6 10 8 1 p 2 [GeV 2 ] W. Ah. Mian EW pion decay in FM June 20th, 2017 18 / 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend