formalizing projective geometry in coq
play

Formalizing projective geometry in Coq Nicolas Magaud Julien - PowerPoint PPT Presentation

Formalizing projective geometry in Coq Nicolas Magaud Julien Narboux Pascal Schreck Universit e de Strasbourg, France GDR LTP, 21 Octobre 2009, Universit e Paris XII Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP


  1. Formalizing projective geometry in Coq Nicolas Magaud Julien Narboux Pascal Schreck Universit´ e de Strasbourg, France GDR LTP, 21 Octobre 2009, Universit´ e Paris XII Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 1 / 23

  2. Outline Objectives 1 Formal proofs in geometry 2 Projective geometry 3 A case study : Desargues’ theorem 4 Formalization in Coq 5 Future work and conclusion 6 Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 2 / 23

  3. Geometric contraint solving and automated deduction in geometry Proofs of theorems in geometry are needed for solving geometric 1 contraint systems. Most methods in automated deduction in geometry (Wu’s method, 2 the area method) can only deal with geometric statements expressed as a ruler and compass construction . We need a system to prove both mathematical theorems and programs! Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 3 / 23

  4. Related work Geometry Hilbert’s Grundlagen [DDS00, MF03] Tarski’s geometry [Nar07] High-school geometry [Gui05] Hessenberg’s theorem [BH08] Convex-hulls algorithm [MF05] [PB01] Image segmentation algorithm [Duf07] Degenerated cases Using Three-Valued Logic to Specify and Verify , Brandt and Schneider [BS05] Using matroids Incidence constraints, a combinatorial approach, Schreck-Michelucci[MS06] Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 4 / 23

  5. Why projective geometry ? Non degeneracy conditions A simple framework Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 5 / 23

  6. Axiom system (2D) Line-Existence ∀ A B : Point , ( ∃ l : Line , A ∈ l ∧ B ∈ l ) Point-Existence ∀ l m : Line , ( ∃ A : Point , A ∈ l ∧ A ∈ m ) Axiom Uniqueness ∀ A B : Point , ∀ l m : Line , A ∈ l ⇒ B ∈ l ⇒ A ∈ m ⇒ B ∈ m ⇒ A = B ∨ l = m Axiom Four Points ∃ A : Point , ∃ B : Point , ∃ C : Point , ∃ D : Point , distinct 4 A B C D ∧ ( ∀ l : Line , ( A ∈ l ∧ B ∈ l ⇒ C / ∈ l ∧ D / ∈ l ) ∧ ( A ∈ l ∧ C ∈ l ⇒ B / ∈ l ∧ D / ∈ l ) ∧ ( A ∈ l ∧ D ∈ l ⇒ B / ∈ l ∧ C / ∈ l ) ∧ ( B ∈ l ∧ C ∈ l ⇒ A / ∈ l ∧ D / ∈ l ) ∧ ( B ∈ l ∧ D ∈ l ⇒ A / ∈ l ∧ C / ∈ l ) ∧ ( C ∈ l ∧ D ∈ l ⇒ A ∈ l ∧ B ∈ l )) Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 6 / 23

  7. b b b Axiom system ( ≥ 3 D ) Line-Existence ∀ A B : Point , ∃ l : Line , A ∈ l ∧ B ∈ l ∀ A B C D : Point , ∀ l AB l CD l AC l BD : Line , A � = B ∧ A � = C ∧ A � = D ∧ B � = C ∧ B � = D ∧ C � = D ∧ A ∈ l AB ∧ B ∈ l AB ∧ C ∈ l CD ∧ D ∈ l CD ∧ Pasch A ∈ l AC ∧ C ∈ l AC ∧ B ∈ l BD ∧ D ∈ l BD ∧ ( ∃ I : Point , I ∈ l AB ∧ I ∈ l CD ) ⇒ ( ∃ J : Point , J ∈ l AC ∧ J ∈ l BD ) b J B b C b I A D Uniqueness ∀ A B : Point , ∀ l m : Line , A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m Three-Points ∀ l : Line , ∃ A B C : Point , A � = B ∧ B � = C ∧ A � = C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l Lower-Dimension ∃ l m : Line , ∀ p : Point , p �∈ l ∨ p �∈ m Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 7 / 23

  8. b b b Duality Proving some theorems by duality: 3 points on a line ⇒ 3 lines through a point P A b C B ⇒ 1 point outside l 1 and l 2 ⇒ 1 line not through P 1 and P 2 b P1 b P b P2 ⇒ The solution: a functor from Projective Plane Geometry to itself Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 8 / 23

  9. � � � Implementation in Coq ! Module types (boxes) and Functors (arrows) forth ProjectivePlane ′ A 1 A 2 A ′ duality ProjectivePlane A 1 A 2 A 3 3 back Duality as a functor Module swap (M’: ProjectivePlane’) <: ProjectivePlane’. Definition Point := M’.Line. Definition Line := M’.Point. Definition Incid := fun (x:Point) (y:Line) => M’.Incid y x. [...] Definition a1_exist := M’.a2_exist. Definition a2_exist := M’.a1_exist. [...] Application Lemma outsider : forall l1 l2: Line, { P:Point | ~Incid P l1/\~Incid P l2}. Proof. [...] Qed. Lemma dual_example : forall P1 P2 : Point,{l : Line | ~ Incid P1 l /\ ~ Incid P2 l}. Proof. apply ProjectivePlaneFacts_m.outsider. Qed. Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 9 / 23

  10. b b b b b b Models Finite Models PG ( dim , b ) where given a point on a line, b is the number of other lines through the point. Fano’s plane ( = PG (2 , 2) the smallest projective plane) C b E D b G A F B PG(2,5) (31 points and as many lines, thus 923 521 cases) Infinite Model: Homogeneous Coordinates Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 10 / 23

  11. b b b b b b b b b Desargues’ theorem let E be a 3D or higher projective space, if the 3 lines joining the corres- ponding vertices of triangles ABC and A ′ B ′ C ′ all meet in a point O , then the 3 intersections of pairs of corresponding sides α , β and γ lie on a line. γ b O A’ A α C’ B’ C B β Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 11 / 23

  12. b b b b b b b b b b b b b b b b b b b b Why 3D ? Desargue’s theorem is false in some 2D models. Moulton’s plane O γ A B C α A’ β C’ β B’ Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 12 / 23

  13. b b b b b b Hessenberg’s theorem If Pappus holds then Desargues holds as well. Pappus C B A b R b Q b P C’ B’ A’ Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 13 / 23

  14. b b b b b b b b b The proof Outline of the proof: γ We prove the 3D version of Desargues’ theorem. b O A’ A We lift the 2D statement α C’ B’ to a 3D version of C Desargues’ theorem which projects into the B 2D statement. β Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 14 / 23

  15. b b b b b b b b b b The proof P Outline of the proof: γ We prove the 3D version of Desargues’ theorem. b O A’ A We lift the 2D statement α C’ B’ to a 3D version of C Desargues’ theorem which projects into the B 2D statement. β Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 14 / 23

  16. b b b b b b b b b b b The proof P Outline of the proof: γ We prove the 3D version b o of Desargues’ theorem. b O a A’ A We lift the 2D statement b c α b b C’ B’ to a 3D version of C Desargues’ theorem which projects into the B 2D statement. β Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 14 / 23

  17. b b b b b b b b b b b The proof P Outline of the proof: γ We prove the 3D version b o of Desargues’ theorem. b O a A’ A We lift the 2D statement b c b b α C’ B’ to a 3D version of C Desargues’ theorem which projects into the B 2D statement. β Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 14 / 23

  18. b b b b b b b b b b b The proof P Outline of the proof: γ We prove the 3D version b o of Desargues’ theorem. b O a A’ A b b b c We lift the 2D statement α C’ B’ to a 3D version of C Desargues’ theorem which projects into the B 2D statement. β Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 14 / 23

  19. b b b b b b b b b b b The proof P Outline of the proof: γ We prove the 3D version b o of Desargues’ theorem. a b O b b A’ A b c We lift the 2D statement α C’ B’ to a 3D version of C Desargues’ theorem which projects into the B 2D statement. β Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 14 / 23

  20. b b b b b b b b b b b The proof P Outline of the proof: γ We prove the 3D version b o a of Desargues’ theorem. b O b b A’ b c A We lift the 2D statement α C’ B’ to a 3D version of C Desargues’ theorem which projects into the B 2D statement. β Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 14 / 23

  21. b b b b b b b b b b b The proof P Outline of the proof: γ We prove the 3D version b o a of Desargues’ theorem. b O b b b c A’ A We lift the 2D statement α C’ B’ to a 3D version of C Desargues’ theorem which projects into the B 2D statement. β Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 14 / 23

  22. b b b b b b b b b b b The proof P Outline of the proof: γ b o We prove the 3D version a of Desargues’ theorem. b O b b b c A’ A We lift the 2D statement α C’ B’ to a 3D version of C Desargues’ theorem which projects into the B 2D statement. β Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 14 / 23

  23. b b b b b b b b b b b The proof P Outline of the proof: γ b o We prove the 3D version a of Desargues’ theorem. b O b b b c A’ A We lift the 2D statement α C’ B’ to a 3D version of C Desargues’ theorem which projects into the B 2D statement. β Magaud Schreck Narboux (UdS) Formalizing projective geometry GDR LTP 14 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend