formal analysis of bone clinical pathologies
play

Formal Analysis of Bone Clinical Pathologies Nicola Paoletti - PowerPoint PPT Presentation

Biological background Computational modeling of bone pathologies Results Formal Analysis of Bone Clinical Pathologies Nicola Paoletti nicola.paoletti@unicam.it School of Science and Technology, Computer Science Division, University of


  1. Biological background Computational modeling of bone pathologies Results Formal Analysis of Bone Clinical Pathologies Nicola Paoletti nicola.paoletti@unicam.it School of Science and Technology, Computer Science Division, University of Camerino, Italy. joint work with Pietro Li` o, Emanuela Merelli NETTAB 2011 , Pavia, 13 October 2011 Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 1/14

  2. Biological background Computational modeling of bone pathologies Results Outline Biological background 1 Computational modeling of bone pathologies 2 Results 3 Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 2/14

  3. Biological background Computational modeling of bone pathologies Results Outline Biological background 1 Computational modeling of bone pathologies 2 Results 3 Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 3/14

  4. Biological background Computational modeling of bone pathologies Results Bone remodeling Bone remodeling (BR) is the process by which aged bone is continuously renewed in a balanced alternation of bone resorption and formation BR is driven by osteoclasts (the diggers) and osteoblasts (the fillers), forming Basic Multi-cellular Units (BMUs) Imbalances between resorption and formation lead to bone pathologies (e.g. in osteoporosis resorption > formation ) Normal Osteoporotic Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 4/14

  5. Biological background Computational modeling of bone pathologies Results Key events in BR (1/2) Osteocytes (1) send signals to the fluid part, activating Pre- osteoblasts (2) ( Pb ) and Pre-osteoclasts (3) ( Pc ) Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 5/14

  6. Biological background Computational modeling of bone pathologies Results Key events in BR (1/2) Pb s express RANKL (4) . Pc s express RANK (5) receptor. Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 5/14

  7. Biological background Computational modeling of bone pathologies Results Key events in BR (1/2) RANK/RANKL binding (6) induces Pcs’ proliferation (7) . Pc s en- large and fuse, forming mature Osteoclasts (8) which start bone Resorption (9) . Mature osteoblasts express the decoy receptor OPG (10) . Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 5/14

  8. Biological background Computational modeling of bone pathologies Results Key events in BR (2/2) Osteoblasts start the bone Formation (11) process. RANKL/OPG binding (12) inhibits RANKL, protecting bone from excessive resorp- tion. Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 6/14

  9. Biological background Computational modeling of bone pathologies Results Key events in BR (2/2) During the Mineralization (13) process, osteoids secreted by os- teoblasts calcify. Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 6/14

  10. Biological background Computational modeling of bone pathologies Results Key events in BR (2/2) Resting (14) : the initial situation is re-established Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 6/14

  11. Biological background Computational modeling of bone pathologies Results Outline Biological background 1 Computational modeling of bone pathologies 2 Results 3 Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 7/14

  12. Biological background Computational modeling of bone pathologies Results ODE model Osteoclasts x 1 = α 1 x 1 g 11 x 2 g 21 − β 1 x 1 ˙ Osteoblasts x 2 = α 2 x 1 g 12 x 2 g 22 − β 2 x 2 ˙ Bone mass z = − k 1 x 1 + k 2 x 2 ˙ Cell populations Cell populations Bone mass 30 1400 Osteoclasts 0 Osteoblasts 1300 1200 25 −2 1100 1000 20 900 −4 800 Density 15 700 600 −6 500 10 400 −8 300 5 200 100 −10 0 0 0 100 200 300 400 0 0 100 100 200 200 300 300 400 400 Time [days] Time [days] Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 8/14

  13. Biological background Computational modeling of bone pathologies Results ODE model 1. Modeling a portion of BMU Parameter sensitivity and x 1 = α 1 x 1 g 11 x 2 g 21 − β 1 x 1 ˙ identifiability x 2 = α 2 x 1 g 12 x 2 g 22 − β 2 x 2 ˙ New parameters after model fitting operations z = − k 1 x 1 + k 2 x 2 ˙ Osteoblast fit Bone Density fit 1400 0 1200 −5 1000 −10 800 −15 600 −20 400 −25 200 −30 fitted fitted 0 original original 0 100 200 300 400 0 100 200 300 400 time [days] time [days] Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 8/14

  14. Biological background Computational modeling of bone pathologies Results ODE model 2. RANKL and aging paramaters RANKL strongly affects the x 1 = α 1 x 1 g 11 x 2 g 21 − β 1 x 1 ˙ resorption phase x 2 = α 2 x 1 g 12 x 2 g 22 − β 2 x 2 ˙ Aging expressed as reduced cellular z = − k 1 x 1 + k 2 x 2 ˙ activity Sensitivity to Rankl x1 x2 Bone 40 800 0 −10 30 600 −20 −30 20 400 −40 200 10 −50 q05−q95 q25−q75 0 0 −60 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 time time time Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 8/14

  15. Biological background Computational modeling of bone pathologies Results ODE model New model x 1 = α 1 x 1 g 11 x 2 g 21 − β 1 x 1 x 1 = α 1 x 1 g 11 x 2 g 21 / rankl − β 1 x 1 ˙ ˙ x 2 = α 2 x 1 g 12 x 2 g 22 − β 2 x 2 x 2 = α 2 x 1 g 12 x 2 g 22 − β 2 x 2 ˙ ˙ z = − ag k 1 x 1 + ag k 2 x 2 ˙ z = − k 1 x 1 + k 2 x 2 ˙ Sensitivity to Rankl x1 x2 Bone 40 800 0 −10 30 600 −20 −30 20 400 −40 200 10 −50 q05−q95 q25−q75 0 0 −60 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 time time time Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 8/14

  16. Biological background Computational modeling of bone pathologies Results Stochastic model From the modified ODE, we derive a CTMC model for the PRISM model checker. Original BMU portion States 21,021 5,616 (-73.28%) Transitions 103,060 27,345 (-73.47%) Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 9/14

  17. Biological background Computational modeling of bone pathologies Results Stochastic model From the modified ODE, we derive a CTMC model for the PRISM model checker. Original BMU portion States 21,021 5,616 (-73.28%) Transitions 103,060 27,345 (-73.47%) Modified ODE model Stochastic model 1 x g 21 / rankl [] x 1 > 0 − → β 1 x 1 : x 1 = x 1 − 1 x 1 = α 1 x g 11 ˙ − β 1 x 1 2 1 x g 21 / rankl → α 1 x g 11 x 2 = α 2 x g 12 1 x g 22 [] x 1 < max x 1 − : x 1 = x 1 +1 ˙ − β 2 x 2 2 2 [ resorb ] x 1 > 0 − → ag · k 1 x 1 : true z = − ag · k 1 x 1 + ag · k 2 x 2 ˙ [] x 2 > 0 − → β 2 x 2 : x 2 = x 2 − 1 → α 2 x g 12 1 x g 22 [] x 2 < max x 2 − : x 2 = x 2 + 1 2 [ form ] x 2 > 0 − → ag · k 2 x 2 : true Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 9/14

  18. Biological background Computational modeling of bone pathologies Results Model checking bone pathologies Diagnostic estimators : 1 Bone density monitor 2 Rapidity of density changes Comparison of two configurations over a 4 years-time: healthy conf: rankl = 1 and ag = 1 pathological conf: rankl = 1 . 2 and ag = 2 Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 10/14

  19. Biological background Computational modeling of bone pathologies Results Outline Biological background 1 Computational modeling of bone pathologies 2 Results 3 Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 11/14

  20. Biological background Computational modeling of bone pathologies Results Bone mineral density f + ( t ) : R { ′′ boneFormed ′′ } =?[ C ≤ t ] , f − ( t ) : R { ′′ boneResorbed ′′ } =?[ C ≤ t ] , f BD ( t ) : f + ( t ) − f − ( t ) , t = 0 , 10 , . . . , 1460 . healthy pathological Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 12/14

  21. Biological background Computational modeling of bone pathologies Results Density change rate f BD ( t + ∆ t ) − f BD ( t ) t = 0 , 50 , . . . , 1450 . , ∆ t Healthy Pathological Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 13/14

  22. Biological background Computational modeling of bone pathologies Results Conclusions Statistical analysis of ODE model for reducing the state space and incorporating RANKL and aging parameters Derivation of a stochastic model in PRISM Comparison of healthy and pathological configurations Probabilistic verification of bone pathologies with clinical estimators Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 14/14

  23. Biological background Computational modeling of bone pathologies Results Conclusions Statistical analysis of ODE model for reducing the state space and incorporating RANKL and aging parameters Derivation of a stochastic model in PRISM Comparison of healthy and pathological configurations Probabilistic verification of bone pathologies with clinical estimators Paoletti, Merelli, Li` o . Formal Analysis of Bone Clinical Pathologies 14/14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend