flux compactifications and matrix models for superstrings
play

Flux Compactifications and Matrix Models for Superstrings - PowerPoint PPT Presentation

Flux Compactifications and Matrix Models for Superstrings Athanasios Chatzistavrakidis Institut f ur Theoretische Physik, Leibniz Universit at Hannover Based on: A.C., 1108.1107 [hep-th] (PRD 84 (2011)) A.C. and Larisa Jonke, 1202.4310


  1. Flux Compactifications and Matrix Models for Superstrings Athanasios Chatzistavrakidis Institut f¨ ur Theoretische Physik, Leibniz Universit¨ at Hannover Based on: A.C., 1108.1107 [hep-th] (PRD 84 (2011)) A.C. and Larisa Jonke, 1202.4310 [hep-th] (PRD 85 (2012)) A.C. and Larisa Jonke, 1207.6412 [hep-th] Edinburgh Mathematical Physics Group 14.11.12 A. Chatzistavrakidis (ITP Hannover) 1 / 33

  2. Introduction and Motivation Main Objective Study properties of string compactifications beyond low-energy sugra. Mainly, unconventional compactifications � related to string length, not captured by vanilla sugra (winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.). A. Chatzistavrakidis (ITP Hannover) 2 / 33

  3. Introduction and Motivation Main Objective Study properties of string compactifications beyond low-energy sugra. Mainly, unconventional compactifications � related to string length, not captured by vanilla sugra (winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.). Frameworks: • Doubled formalism - Twisted Doubled Tori • Generalized Complex Geometry • Double Field Theory • CFT - Sigma models ✔ Matrix Models A. Chatzistavrakidis (ITP Hannover) 2 / 33

  4. Introduction and Motivation Main Objective Study properties of string compactifications beyond low-energy sugra. Mainly, unconventional compactifications � related to string length, not captured by vanilla sugra (winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.). Frameworks: • Doubled formalism - Twisted Doubled Tori Hull; Hull, Reid-Edwards; Dall’Agata et.al. • Generalized Complex Geometry Andriot et.al.; Berman et.al. • Double Field Theory Hohm, Hull, Zwiebach; Aldazabal et.al.; Geissbuhler; Grana, Marques; Dibitetto et.al. • CFT - Sigma models L¨ ust; Blumenhagen, Plauschinn; Mylonas, Schupp, Szabo ✔ Matrix Models Lowe, Nastase, Ramgoolam; A.C., Jonke A. Chatzistavrakidis (ITP Hannover) 3 / 33

  5. Why Matrix Models? Advantages: ✔ Non-perturbative framework. ✔ Non-commutative structures. ✔ Quantization. ✔ Possible phenomenological applications • Particle physics, “matrix model building“. Aoki ’10-’12, A.C., Steinacker, Zoupanos ’11 • Early and late time cosmology. Kim, Nishimura, Tsuchiya ’11-’12 A. Chatzistavrakidis (ITP Hannover) 4 / 33

  6. Why Matrix Models? Advantages: ✔ Non-perturbative framework. ✔ Non-commutative structures. ✔ Quantization. ✔ Possible phenomenological applications • Particle physics, “matrix model building“. Aoki ’10-’12, A.C., Steinacker, Zoupanos ’11 • Early and late time cosmology. Kim, Nishimura, Tsuchiya ’11-’12 Disadvantages: × Sugra limit is not clear. × Less calculability. A. Chatzistavrakidis (ITP Hannover) 4 / 33

  7. Matrix Models as non-perturbative definitions of string/M theory. Banks, Fischler, Shenker, Susskind ’96, Ishibashi, Kawai, Kitazawa, Tsuchiya ’96, ... Matrix Model Compactifications (MMC) on non-commutative tori. Connes, Douglas, A. Schwarz ’97 Constant background B-field ← → Non-commutative deformation CDS θ ij ← → B ij A. Chatzistavrakidis (ITP Hannover) 5 / 33

  8. Matrix Models as non-perturbative definitions of string/M theory. Banks, Fischler, Shenker, Susskind ’96, Ishibashi, Kawai, Kitazawa, Tsuchiya ’96, ... Matrix Model Compactifications (MMC) on non-commutative tori. Connes, Douglas, A. Schwarz ’97 Constant background B-field ← → Non-commutative deformation CDS θ ij ← → B ij What about fluxes? • Geometric (related e.g. to nilmanifolds/twisted tori): f • NSNS (e.g. non-constant B-fields): H • “Non-geometric” (T-duality): Q , R Q: How can they be traced in Matrix Compactifications? A. Chatzistavrakidis (ITP Hannover) 5 / 33

  9. Overview Matrix Models for superstrings 1 Nilmanifolds 2 Matrix Model Compactifications 3 T-duality, Non-associativity and Flux Quantization 4 Work in progress 5 Concluding Remarks 6 A. Chatzistavrakidis (ITP Hannover) 6 / 33

  10. Matrix Models IKKT: non-perturbative IIB superstring, Ishibashi, Kawai, Kitazawa, Tsuchiya ’96 � d X d Ψ e − S , Z = with action � � S IKKT = 1 − 1 2[ X a , X b ] 2 − ¯ ΨΓ a [ X a , Ψ] 2 g Tr . X a : 10 N × N Hermitian matrices (large N ); Ψ: fermionic superpartners. BFSS: non-perturbative M-theory, Banks, Fischler, Shenker, Susskind ’96 � ˙ S BFSS = 1 � � X a − 1 � X a ˙ 2[ X a , X b ] 2 � dt Tr + fermions , 2 g X a ( t ): 9 and time-dependent... A. Chatzistavrakidis (ITP Hannover) 7 / 33

  11. Classical solutions EOM (IKKT; setting Ψ = 0): � [ X b , [ X b , X a ]] = 0 . b • Basic solutions: [ X a , X b ] = i θ ab Rank( θ ) = p + 1 ⇒ Dp brane. A. Chatzistavrakidis (ITP Hannover) 8 / 33

  12. Classical solutions EOM (IKKT; setting Ψ = 0): � [ X b , [ X b , X a ]] = 0 . b • Basic solutions: [ X a , X b ] = i θ ab Rank( θ ) = p + 1 ⇒ Dp brane. • Lie algebra type? [ X a , X b ] = if c ab X c If no deformation � no semisimple. Nilpotent and solvable? Fully classified up to 7D (6D: finite) Morozov ’58, Mubarakzyanov ’63, Patera et.al. ’75 Resulting solutions: 7 nilpotent (3D, 5D(2), 6D(4)) + 2 solvable (4D, 5D). A.C. ’11 A. Chatzistavrakidis (ITP Hannover) 8 / 33

  13. Classical solutions EOM (IKKT; setting Ψ = 0): � [ X b , [ X b , X a ]] = 0 . b • Basic solutions: [ X a , X b ] = i θ ab Rank( θ ) = p + 1 ⇒ Dp brane. • Lie algebra type? [ X a , X b ] = if c ab X c If no deformation � no semisimple. Nilpotent and solvable? Fully classified up to 7D (6D: finite) Morozov ’58, Mubarakzyanov ’63, Patera et.al. ’75 Resulting solutions: 7 nilpotent (3D, 5D(2), 6D(4)) + 2 solvable (4D, 5D). A.C. ’11 Why is this interesting? ✔ Play role in cosmological studies based on IKKT. Kim, Nishimura, Tsuchiya ’11-’12 ✔ Starting point for a class of compact manifolds (nil- and solvmanifolds). A. Chatzistavrakidis (ITP Hannover) 8 / 33

  14. Nilmanifolds Mal’cev ’51 Smooth manifolds M = G / Γ G : Nilpotent Lie group; Γ: Discrete co-compact subgroup of G . Nilpotency � upper triangular matrices... Construction algorithm: α. Find a basis T a of Lie(G) in terms of upper triangular matrices. β. Choose a representative group element g ∈ G . γ. Define the restriction of g for integer matrix entries ( γ ∈ Γ). δ. Γ acts on G by matrix multiplication. Quotient out this action and construct G / Γ. A. Chatzistavrakidis (ITP Hannover) 9 / 33

  15. Some geometry Lie algebra 1-form e = g − 1 dg = e a T a . e a correspond to the vielbein basis and there is a twist matrix such that: e a = U ( x ) a b dx b They satisfy the Maurer-Cartan equations de a = − 1 bc e b ∧ e c , 2 f a f a bc being the structure constants of Lie(G) ∼ geometric fluxes. Certain periodicity conditions render e a globally well-defined. Thus nilmanifolds are (iterated) twisted fibrations of toroidal fibers over toroidal bases. A. Chatzistavrakidis (ITP Hannover) 10 / 33

  16. � � � � � M � T D n � � i D i . . . � M D 1 + D 2 + D 3 T D 3 � � � M D 1 + D 2 T D 2 � � T D 1 → The number of such iterations is set by the nilpotency class. A. Chatzistavrakidis (ITP Hannover) 11 / 33

  17. Prototype example: 3D 3D nilpotent Lie algebra: [ T 1 , T 2 ] = T 3 . Upper triangular basis:       0 1 0 0 0 0 0 0 1  ,  ,  . T 1 = 0 0 0 T 2 = 0 0 1 T 3 = 0 0 0    0 0 0 0 0 0 0 0 0 x 1 x 3   1  , x i ∈ R . x 2 Group element: g = 0 1  0 0 1 γ 1 γ 3   1  , γ i ∈ Z . γ 2 Restriction to Γ: g | Γ = 0 1  0 0 1 A. Chatzistavrakidis (ITP Hannover) 12 / 33

  18. � dx 3 − x 1 dx 2  dx 1  0  . dx 2 Invariant 1-form: e = 0 0  0 0 0 Its components are: e 1 = dx 1 , e 2 = dx 2 , e 3 = dx 3 − x 1 dx 2 .   1 0 0  . Twist matrix: U = 0 1 0  − x 1 0 1 Reading off the required identifications: ( x 1 , x 2 , x 3 ) ∼ ( x 1 , x 2 +2 π R 2 , x 3 ) ∼ ( x 1 , x 2 , x 3 +2 π R 3 ) ∼ ( x 1 +2 π R 1 , x 2 , x 3 +2 π R 1 x 2 ) T 2 � M = ˜ (2 , 3) � � T 3 S 1 (1) A. Chatzistavrakidis (ITP Hannover) 13 / 33

  19. T-duality approach Alternatively, consider a square torus with N units of NSNS flux H = dB , proportional to its volume form: ✔ Metric: ds 2 = δ ab dx a dx b . ✔ B-field: B 23 = Nx 1 . Perform a T-duality along x 3 using the Buscher rules: T i T i T i → B ai → G ab − G ai G bi − B ai B bi 1 − → G ii , − G ii , − , G ii G ai G ab G ii T i T i → G ai → B ab − B ai G bi − G ai B bi − G ii , − B ai B ab G ii In the T-dual frame: ✔ Metric: ds 2 = δ ab e a e b � e a of ˜ T 3 . ✔ B-field: B = 0 . Depicted as: T c → f c H abc ← ab A. Chatzistavrakidis (ITP Hannover) 14 / 33

  20. Matrix Model Compactification-Tori Connes, Douglas, Schwarz ’97 Restriction of the action functional under periodicity conditions. Toroidal T d : U i X i ( U i ) − 1 = X i + 1 , i = 1 , ..., d , U i X a ( U i ) − 1 = X a , a � = i , a = 1 , . . . , 9 , with U i unitary and invertible (gauge transformations of the model). A. Chatzistavrakidis (ITP Hannover) 15 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend