flattening the transition p systems with dissolution
play

Flattening the Transition P Systems with Dissolution Oana - PowerPoint PPT Presentation

Flattening the Transition P Systems with Dissolution Oana Agrigoroaiei Gabriel Ciobanu A.I.Cuza University of Ia si, Department of Interdisciplinary Research, Romania Romanian Academy, Institute of Computer Science, Ia si, Romania


  1. Flattening the Transition P Systems with Dissolution Oana Agrigoroaiei Gabriel Ciobanu “A.I.Cuza” University of Ia¸ si, Department of Interdisciplinary Research, Romania Romanian Academy, Institute of Computer Science, Ia¸ si, Romania oanaag@iit.tuiasi.ro, gabriel@info.uaic.ro 11th International Conference on Membrane Computing 24-27 August 2010 Jena, Germany O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 1 / 9

  2. The general idea Π f with 1 membrane Π with m membranes object a in membrane i object ( a , i ) δ appears in membrane i object ( δ, i ) a rule r f rule r without “out” set r f of rules (possible parents) rule r with “out” membrane i dissoluble set D i of rules ( x , i ) → ( x , cPar i ) mpr step in Π f using r f mpr step in Π (including communication) mpr step in Π f using D i diss step in Π – special rule ∇ → 0 to ensure sepa- ration between applying rules from r f and rules from D i Membrane i is dissoluble: exists r ∈ R i , δ ∈ rhs ( r ). Note: i not dissoluble ⇔ i will not dissolve in any evolution step. O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 2 / 9

  3. General Notions: a rule u → v | x 1 ,..., x n , ¬ y 1 ,..., y m has a set of promoters x i and a set of inhibitors y j ; intermediate configuration of a P system of degree m is a vector W = ( w 1 , . . . , w m ) with w i multiset over O or w i = ∗ ; w i = ∗ specifies that membrane i has been dissolved; W = ( w 1 , . . . , w m ) configuration if all w i ( δ ) = 0; for W , V configurations, W = ⇒ T V whenever W → mpr V or W → mpr → δ V O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 3 / 9

  4. Example 1 b r 1 : a → ( b , in 4 ) r 2 : b → a 2 a r 3 : a → δ 3 b r 4 : b → a + δ 4 b r 5 : b → ( c , out ) ( b , a , b , b ) → mpr ( a , δ, a + c + δ, 0) → δ (2 a + c , ∗ , ∗ , 0) → mpr → mpr ( c , ∗ , ∗ , 2 b ) → mpr (3 c , ∗ , ∗ , 0) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 4 / 9

  5. Example 1 a r 1 : a → ( b , in 4 ) r 2 : b → a 2 δ r 3 : a → δ 3 a + c + δ r 4 : b → a + δ 4 r 5 : b → ( c , out ) ( b , a , b , b ) → mpr ( a , δ, a + c + δ, 0) → δ (2 a + c , ∗ , ∗ , 0) → mpr → mpr ( c , ∗ , ∗ , 2 b ) → mpr (3 c , ∗ , ∗ , 0) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 4 / 9

  6. Example 1 2 a + c r 1 : a → ( b , in 4 ) 4 r 5 : b → ( c , out ) ( b , a , b , b ) → mpr ( a , δ, a + c + δ, 0) → δ (2 a + c , ∗ , ∗ , 0) → mpr → mpr ( c , ∗ , ∗ , 2 b ) → mpr (3 c , ∗ , ∗ , 0) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 4 / 9

  7. Example 1 c r 1 : a → ( b , in 4 ) 4 2 b r 5 : b → ( c , out ) ( b , a , b , b ) → mpr ( a , δ, a + c + δ, 0) → δ (2 a + c , ∗ , ∗ , 0) → mpr → mpr ( c , ∗ , ∗ , 2 b ) → mpr (3 c , ∗ , ∗ , 0) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 4 / 9

  8. Example 1 3 c r 1 : a → ( b , in 4 ) 4 r 5 : b → ( c , out ) ( b , a , b , b ) → mpr ( a , δ, a + c + δ, 0) → δ (2 a + c , ∗ , ∗ , 0) → mpr → mpr ( c , ∗ , ∗ , 2 b ) → mpr (3 c , ∗ , ∗ , 0) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 4 / 9

  9. The flattened P system Π f = ( O f , µ f , R f ) O f = ( O ∪ { δ } ) × { 1 , . . . , m } ∪ {∇} ; µ f is formed of only one membrane; R f = � r ∈ R r f ∪ {∇ → 0 } ∪ � i dissolvable D i ; O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 5 / 9

  10. Example (continued) Configuration of Π 1 b r 1 : a → ( b , in 4 ) r 2 : b → a 2 a The configuration of Π f : r 3 : a → δ 3 b ( b , 1) + ( a , 2) + ( b , 3) + ( b , 4) r 4 : b → a + δ 4 b r 5 : b → ( c , out ) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 6 / 9

  11. Example (continued) Configuration of Π 1 b r 1 : a → ( b , in 4 ) r 2 : b → a 2 a The set of rules r f 1 contains only r 3 : a → δ one rule: 3 b ( a , 1) → ( b , 4) | ( δ, 2) , ( δ, 3) , ¬∇ r 4 : b → a + δ 4 b r 5 : b → ( c , out ) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 6 / 9

  12. Example (continued) Configuration of Π 1 b r 1 : a → ( b , in 4 ) r 2 : b → a 2 a The set of rules r f 2 also contains r 3 : a → δ only one rule: 3 b ( b , 1) → ( a , 1) | ¬∇ r 4 : b → a + δ 4 b r 5 : b → ( c , out ) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 6 / 9

  13. Example (continued) Configuration of Π 1 b r 1 : a → ( b , in 4 ) r 2 : b → a 2 a This also takes place for r f 3 : r 3 : a → δ 3 ( a , 2) → ( δ, 2) + ∇| ¬∇ b and for r f r 4 : b → a + δ 4 : 4 b ( b , 3) → ( a + δ, 3) + ∇| ¬∇ r 5 : b → ( c , out ) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 6 / 9

  14. Example (continued) Configuration of Π 1 b r 1 : a → ( b , in 4 ) r 2 : b → a 2 a This also takes place for r f 3 : r 3 : a → δ 3 ( a , 2) → ( δ, 2) + ∇| ¬∇ b and for r f r 4 : b → a + δ 4 : 4 b ( b , 3) → ( a + δ, 3) + ∇| ¬∇ r 5 : b → ( c , out ) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 6 / 9

  15. Example (continued) Configuration of Π 1 b r 1 : a → ( b , in 4 ) The set of rules r f 5 contains three r 2 : b → a rules, one for each possible desti- 2 nation of the c from ( c , out ): a r 3 : a → δ ( b , 4) → ( c , 3) | ¬∇ , ( δ, 3) 3 b r 4 : b → a + δ ( b , 4) → ( c , 2) | ( δ, 3) , ¬∇ , ( δ, 2) 4 b r 5 : b → ( c , out ) ( b , 4) → ( c , 1) | ( δ, 3) , ( δ, 2) , ¬∇ O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 6 / 9

  16. Example (continued) Configuration of Π 1 b r 1 : a → ( b , in 4 ) r 2 : b → a 2 a r 3 : a → δ We add two sets of rules, D 2 and 3 D 3 , to deal with moving objects b if membrane 2 or membrane 3 is r 4 : b → a + δ dissolved. 4 b r 5 : b → ( c , out ) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 6 / 9

  17. Example (continued) Configuration of Π 1 b r 1 : a → ( b , in 4 ) r 2 : b → a 2 a r 3 : a → δ The rules in D 2 are given for all 3 x ∈ O : b r 4 : b → a + δ ( x , 2) → ( x , 1) | ( δ, 2) 4 b r 5 : b → ( c , out ) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 6 / 9

  18. Example (continued) Configuration of Π 1 b r 1 : a → ( b , in 4 ) r 2 : b → a 2 a The rules in D 3 are given for all r 3 : a → δ x ∈ O : 3 b ( x , 3) → ( x , 2) | ( δ, 3) , ¬ ( δ, 2) r 4 : b → a + δ 4 ( x , 3) → ( x , 1) | ( δ, 3) , ( δ, 2) b r 5 : b → ( c , out ) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 6 / 9

  19. Example (continued) Configuration of Π 1 b The special symbol ∇ is always r 1 : a → ( b , in 4 ) produced together with one of r 2 : b → a the ( δ, i ) symbols. By appearing, 2 a it stops the application of any rule from the sets r f . r 3 : a → δ 3 The special rule b r 4 : b → a + δ ∇ → 0 4 b is applied with the rules from sets r 5 : b → ( c , out ) D j and by consuming ∇ it allows for rules from r f to be applied in the next step. O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 6 / 9

  20. Example (continued) Configuration of Π f Configuration of Π 1 1 ( b , 1) + ( a , 2) + ( b , 3) + ( b , 4) b r 1 : a → ( b , in 4 ) r f 1 : ( a , 1) → ( b , 4) | ( δ, 2) , ( δ, 3) , ¬∇ r 2 : b → a r f 2 : ( b , 1) → ( a , 1) | ¬∇ 2 r f a 3 : ( a , 2) → ( δ, 2) + ∇| ¬∇ r 3 : a → δ r f 4 : ( b , 3) → ( a + δ, 3) + ∇| ¬∇ 3 r f 5 : ( b , 4) → ( c , 3) | ¬∇ , ( δ, 3) b ( b , 4) → ( c , 2) | ( δ, 3) , ¬∇ , ( δ, 2) r 4 : b → a + δ ( b , 4) → ( c , 1) | ( δ, 3) , ( δ, 2) , ¬∇ 4 b ∇ → 0 r 5 : b → ( c , out ) D 2 : ( x , 2) → ( x , 1) | ( δ, 2) D 3 : ( x , 3) → ( x , 2) | ( δ, 3) , ¬ ( δ, 2) ( x , 3) → ( x , 1) | ( δ, 3) , ( δ, 2) W 0 = ( b , a , b , b ) flat ( W 0 ) = ( b , 1)+( a , 2)+( b , 3)+( b , 4) O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 7 / 9

  21. Example (continued) Configuration of Π f Configuration of Π 1 1 ( b , 1) + ( a , 2) + ( b , 3) + ( b , 4) b r 1 : a → ( b , in 4 ) r f 1 : ( a , 1) → ( b , 4) | ( δ, 2) , ( δ, 3) , ¬∇ r 2 : b → a r f 2 : ( b , 1) → ( a , 1) | ¬∇ 2 r f a 3 : ( a , 2) → ( δ, 2) + ∇| ¬∇ r 3 : a → δ r f 4 : ( b , 3) → ( a + δ, 3) + ∇| ¬∇ 3 r f 5 : ( b , 4) → ( c , 3) | ¬∇ , ( δ, 3) b ( b , 4) → ( c , 2) | ( δ, 3) , ¬∇ , ( δ, 2) r 4 : b → a + δ ( b , 4) → ( c , 1) | ( δ, 3) , ( δ, 2) , ¬∇ 4 b ∇ → 0 r 5 : b → ( c , out ) D 2 : ( x , 2) → ( x , 1) | ( δ, 2) D 3 : ( x , 3) → ( x , 2) | ( δ, 3) , ¬ ( δ, 2) ( x , 3) → ( x , 1) | ( δ, 3) , ( δ, 2) ( b , a , b , b ) → mpr ( a , δ, a + c + δ, 0) ( b , 1) + ( a , 2) + ( b , 3) + ( b , 4) → mpr ( a , 1) + ( δ, 2) + ( a + c + δ, 3) + 2 ∇ O. Agrigoroaiei, G. Ciobanu Flattening P Systems with Dissolution CMC 2010 7 / 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend