first order theories
play

First-Order Theories First-order theory T defined by Signature - - PowerPoint PPT Presentation

First-Order Theories First-order theory T defined by Signature - set of constant, function, and predicate symbols Set of axioms A T - set of closed (no free variables) -formulae 3. First-Order Theories -formula constructed of


  1. First-Order Theories First-order theory T defined by ◮ Signature Σ - set of constant, function, and predicate symbols ◮ Set of axioms A T - set of closed (no free variables) Σ-formulae 3. First-Order Theories Σ-formula constructed of constants, functions, and predicate symbols from Σ, and variables, logical connectives, and quantifiers The symbols of Σ are just symbols without prior meaning — the axioms of T provide their meaning A Σ-formula F is valid in theory T ( T -valid, also T | = F ), if every interpretation I that satisfies the axioms of T , i.e. I | = A for every A ∈ A T ( T -interpretation) also satisfies F , i.e. I | = F 3- 1 3- 2 Theory of Equality T E A Σ-formula F is satisfiable in T ( T -satisfiable), if there is a T -interpretation (i.e. satisfies all the axioms of T ) that satisfies F Signature Σ = : { = , a , b , c , · · · , f , g , h , · · · , p , q , r , · · · } Two formulae F 1 and F 2 are equivalent in T ( T -equivalent), if consists of T | = F 1 ↔ F 2 , ◮ =, a binary predicate, interpreted by axioms. i.e. if for every T -interpretation I , I | = F 1 iff I | = F 2 ◮ all constant, function, and predicate symbols. A fragment of theory T is a syntactically-restricted subset of Axioms of T E formulae of the theory. 1. ∀ x . x = x (reflexivity) 2. ∀ x , y . x = y → y = x (symmetry) Example: quantifier-free segment of theory T is the set of 3. ∀ x , y , z . x = y ∧ y = z → x = z (transitivity) quantifier-free formulae in T . 4. for each positive integer n and n -ary function symbol f , ∀ x 1 , . . . , x n , y 1 , . . . , y n . � i x i = y i → f ( x 1 , . . . , x n ) = f ( y 1 , . . . , y n ) A theory T is decidable if T | = F ( T -validity) is decidable for (congruence) every Σ-formula F , 5. for each positive integer n and n -ary predicate symbol p , i.e., there is an algorithm that always terminate with “yes”, ∀ x 1 , . . . , x n , y 1 , . . . , y n . � i x i = y i → ( p ( x 1 , . . . , x n ) ↔ p ( y 1 , . . . , y n )) if F is T -valid, and “no”, if F is T -invalid. (equivalence) A fragment of T is decidable if T | = F is decidable for every Congruence and Equivalence are axiom schemata. For example, Σ-formula F in the fragment. Congruence for binary function f 2 for n = 2: ∀ x 1 , x 2 , y 1 , y 2 . x 1 = y 1 ∧ x 2 = y 2 → f 2 ( x 1 , x 2 ) = f 2 ( y 1 , y 2 ) 3- 3 3- 4

  2. Natural Numbers and Integers T E is undecidable. The quantifier-free fragment of T E is decidable. Very efficient Natural numbers N = { 0 , 1 , 2 , · · · } algorithm. Integers Z = {· · · , − 2 , − 1 , 0 , 1 , 2 , · · · } Semantic argument method can be used for T E Example: Prove Three variations: F : a = b ∧ b = c → g ( f ( a ) , b ) = g ( f ( c ) , a ) T E -valid. ◮ Peano arithmetic T PA : natural numbers with addition and Suppose not; then there exists a T = -interpretation I such that multiplication I �| = F . Then, ◮ Presburger arithmetic T N : natural numbers with addtion ◮ Theory of integers T Z : integers with + , − , > 1 . I �| = F assumption 2 . | = a = b ∧ b = c 1, → I 3 . �| = g ( f ( a ) , b ) = g ( f ( c ) , a ) 1, → I 4 . | = a = b 2, ∧ I 5 . I | = b = c 2, ∧ 6 . I | = a = c 4, 5, (transitivity) 7 . I | = f ( a ) = f ( c ) 6, (congruence) 8 . I | = g ( f ( a ) , b ) = g ( f ( c ) , a ) 4, 7, (congruence), (symmetry) 3 and 8 are contradictory ⇒ F is T = -valid 3- 5 3- 6 1. Peano Arithmetic T PA (first-order arithmetic) We have > and ≥ since 3 x + 5 > 2 y write as ∃ z . z � = 0 ∧ 3 x + 5 = 2 y + z Σ PA : { 0 , 1 , + , · , = } 3 x + 5 ≥ 2 y write as ∃ z . 3 x + 5 = 2 y + z The axioms: Example: 1. ∀ x . ¬ ( x + 1 = 0) (zero) ◮ Pythagorean Theorem is T PA -valid ∃ x , y , z . x � = 0 ∧ y � = 0 ∧ z � = 0 ∧ xx + yy = zz 2. ∀ x , y . x + 1 = y + 1 → x = y (successor) ◮ Fermat’s Last Theorem is T PA -invalid (Andrew Wiles, 1994) 3. F [0] ∧ ( ∀ x . F [ x ] → F [ x + 1]) → ∀ x . F [ x ] (induction) ∃ n . n > 2 → ∃ x , y , z . x � = 0 ∧ y � = 0 ∧ z � = 0 ∧ x n + y n = z n 4. ∀ x . x + 0 = x (plus zero) Remark (G¨ odel’s first incompleteness theorem) 5. ∀ x , y . x + ( y + 1) = ( x + y ) + 1 (plus successor) Peano arithmetic T PA does not capture true arithmetic: 6. ∀ x . x · 0 = 0 (times zero) There exist closed Σ PA -formulae representing valid propositions of 7. ∀ x , y . x · ( y + 1) = x · y + x (times successor) number theory that are not T PA -valid. Line 3 is an axiom schema. The reason: T PA actually admits nonstandard interpretations Example: 3 x + 5 = 2 y can be written using Σ PA as Satisfiability and validity in T PA is undecidable. Restricted theory – no multiplication x + x + x + 1 + 1 + 1 + 1 + 1 = y + y 3- 7 3- 8

  3. 2. Presburger Arithmetic T N 3. Theory of Integers T Z Σ N : { 0 , 1 , + , = } no multiplication! Σ Z : { . . . , − 2 , − 1 , 0 , 1 , 2 , . . . , − 3 · , − 2 · , 2 · , 3 · , . . . , + , − , = , > } where Axioms T N : ◮ . . . , − 2 , − 1 , 0 , 1 , 2 , . . . are constants 1. ∀ x . ¬ ( x + 1 = 0) (zero) ◮ . . . , − 3 · , − 2 · , 2 · , 3 · , . . . are unary functions 2. ∀ x , y . x + 1 = y + 1 → x = y (successor) (intended 2 · x is 2 x ) 3. F [0] ∧ ( ∀ x . F [ x ] → F [ x + 1]) → ∀ x . F [ x ] (induction) ◮ + , − , = , > 4. ∀ x . x + 0 = x (plus zero) T Z and T N have the same expressiveness 5. ∀ x , y . x + ( y + 1) = ( x + y ) + 1 (plus successor) 3 is an axiom schema. • Every T Z -formula can be reduced to Σ N -formula. Example: Consider the T Z -formula T N -satisfiability and T N -validity are decidable F 0 : ∀ w , x . ∃ y , z . x + 2 y − z − 13 > − 3 w + 5 (Presburger, 1929) Introduce two variables, v p and v n (range over the nonnegative integers) for each variable v (range over the integers) of F 0 3- 9 3- 10 • Every T N -formula can be reduced to Σ Z -formula. Example: To decide the T N -validity of the T N -formula ∀ w p , w n , x p , x n . ∃ y p , y n , z p , z n . F 1 : ( x p − x n ) + 2( y p − y n ) − ( z p − z n ) − 13 > − 3( w p − w n ) + 5 ∀ x . ∃ y . x = y + 1 Eliminate − by moving to the other side of > decide the T Z -validity of the T Z -formula ∀ w p , w n , x p , x n . ∃ y p , y n , z p , z n . ∀ x . x ≥ 0 → ∃ y . y ≥ 0 ∧ x = y + 1 , F 2 : x p + 2 y p + z n + 3 w p > x n + 2 y n + z p + 13 + 3 w n + 5 where t 1 ≥ t 2 expands to t 1 = t 2 ∨ t 1 > t 2 Eliminate > T Z -satisfiability and T N -validity is decidable ∀ w p , w n , x p , x n . ∃ y p , y n , z p , z n . ∃ u . ¬ ( u = 0) ∧ x p + y p + y p + z n + w p + w p + w p F 3 : = x n + y n + y n + z p + w n + w n + w n + u +1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 . which is a T N -formula equivalent to F 0 . 3- 11 3- 12

  4. Rationals and Reals 1. Theory of Reals T R Σ = { 0 , 1 , + , − , = , ≥} Σ R : { 0 , 1 , + , − , · , = , ≥} with multiplication. ◮ Theory of Reals T R (with multiplication) Axioms in text. √ x 2 = 2 ⇒ x = ± 2 Example: ◮ Theory of Rationals T Q (no multiplication) ∀ a , b , c . b 2 − 4 ac ≥ 0 ↔ ∃ x . ax 2 + bx + c = 0 x = 2 is T R -valid. 2 x = 7 ⇒ 7 ���� x + x T R is decidable (Tarski, 1930) High time complexity Note: Strict inequality OK ∀ x , y . ∃ z . x + y > z rewrite as ∀ x , y . ∃ z . ¬ ( x + y = z ) ∧ x + y ≥ z 3- 13 3- 14 Recursive Data Structures (RDS) 2. Theory of Rationals T Q Σ Q : { 0 , 1 , + , − , = , ≥} 1. RDS theory of LISP-like lists, T cons without multiplication. Σ cons : { cons , car , cdr , atom , = } Axioms in text. where Rational coefficients are simple to express in T Q cons( a , b ) – list constructed by concatenating a and b car( x ) – left projector of x : car(cons( a , b )) = a Example: Rewrite cdr( x ) – right projector of x : cdr(cons( a , b )) = b 2 x + 2 1 3 y ≥ 4 atom( x ) – true iff x is a single-element list as the Σ Q -formula Axioms: 3 x + 4 y ≥ 24 1. The axioms of reflexivity, symmetry, and transitivity of = 2. Congruence axioms T Q is decidable Quantifier-free fragment of T Q is efficiently decidable ∀ x 1 , x 2 , y 1 , y 2 . x 1 = x 2 ∧ y 1 = y 2 → cons( x 1 , y 1 ) = cons( x 2 , y 2 ) ∀ x , y . x = y → car( x ) = car( y ) ∀ x , y . x = y → cdr( x ) = cdr( y ) 3- 15 3- 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend