find the inverse z transform of 2 z 2 2 z g z z 2 2 z 3 g
play

Find the inverse Z-transform of 2 z 2 + 2 z G ( z ) = z 2 + 2 z 3 G - PowerPoint PPT Presentation

Inverse Z-transform - Partial Fraction 1. Find the inverse Z-transform of 2 z 2 + 2 z G ( z ) = z 2 + 2 z 3 G ( z ) 2 z + 2 = z ( z + 3)( z 1) A B = z + 3 + z 1 Multiply throughout by z +3 and let z = 3 to get A = 2 z + 2


  1. Inverse Z-transform - Partial Fraction 1. Find the inverse Z-transform of 2 z 2 + 2 z G ( z ) = z 2 + 2 z − 3 G ( z ) 2 z + 2 = z ( z + 3)( z − 1) A B = z + 3 + z − 1 Multiply throughout by z +3 and let z = − 3 to get A = 2 z + 2 � = − 4 � − 4 = 1 � z − 1 � z = − 3 1 Digital Control Kannan M. Moudgalya, Autumn 2007

  2. Inverse Z-transform - Partial Fraction 2. G ( z ) A B = z + 3 + z z − 1 Multiply throughout by z − 1 and let z = 1 to get B = 4 4 = 1 G ( z ) 1 1 = z + 3 + | z | > 3 z z − 1 z z G ( z ) = z + 3 + | z | > 3 z − 1 ↔ ( − 3) n 1( n ) + 1( n ) 2 Digital Control Kannan M. Moudgalya, Autumn 2007

  3. Partial Fraction - Repeated Poles 3. N ( z ) G ( z ) = ( z − α ) p D 1 ( z ) α not a root of N ( z ) and D 1 ( z ) A 1 A 2 A p G ( z ) = z − α + ( z − α ) 2 + · · · + ( z − α ) p + G 1 ( z ) G 1 ( z ) has poles corresponding to those of D 1 ( z ) . Multiply by ( z − α ) p ( z − α ) p G ( z ) = A 1 ( z − α ) p − 1 + A 2 ( z − α ) p − 2 + · · · + A p − 1 ( z − α ) + A p + G 1 ( z )( z − α ) p 3 Digital Control Kannan M. Moudgalya, Autumn 2007

  4. Partial Fraction - Repeated Poles 4. ( z − α ) p G ( z ) = A 1 ( z − α ) p − 1 + A 2 ( z − α ) p − 2 + · · · + A p − 1 ( z − α ) + A p + G 1 ( z )( z − α ) p Substituting z = α , A p = ( z − α ) p G ( z ) | z = α Differentiate and let z = α : A p − 1 = d dz ( z − α ) p G ( z ) | z = α d p − 1 1 dz p − 1 ( z − α ) p G ( z ) | z = α Continuing, A 1 = ( p − 1)! 4 Digital Control Kannan M. Moudgalya, Autumn 2007

  5. Repeated Poles - an Example 5. G ( z ) = 11 z 2 − 15 z + 6 A 1 A 2 B ( z − 2)( z − 1) 2 = z − 1 + ( z − 1) 2 + z − 2 × ( z − 2) , let z = 2 , to get B = 20 . × ( z − 1) 2 , 11 z 2 − 15 z + 6 = A 1 ( z − 1) + A 2 + B ( z − 1) 2 z − 2 z − 2 With z = 1 , get A 2 = − 2 . Differentiating with respect to z and with z = 1 , A 1 = ( z − 2)(22 z − 15) − (11 z 2 − 15 z + 6) � � = − 9 � ( z − 2) 2 � z =1 9 2 20 G ( z ) = − z − 1 − ( z − 1) 2 + z − 2 5 Digital Control Kannan M. Moudgalya, Autumn 2007

  6. Important Result from Differentiation 6. Problem 4.9 in Text: Consider ∞ z 1( n ) a n ↔ � � < 1 a n z − n , � � az − 1 � z − a = n =0 Differentiating with respect to a , ∞ z z � na n − 1 z − n , na n − 1 1( n ) ↔ ( z − a ) 2 = ( z − a ) 2 n =0 Substituting a = 1 , can obtain the Z-transform of n : z n 1( n ) ↔ ( z − 1) 2 Through further differentiation, can derive Z-transforms of n 2 , n 3 , etc. 6 Digital Control Kannan M. Moudgalya, Autumn 2007

  7. Repeated Poles - an Example 7. 9 2 20 G ( z ) = − z − 1 − ( z − 1) 2 + z − 2 zG ( z ) = − 9 z ( z − 1) 2 + 20 z 2 z z − 1 − z − 2 ↔ ( − 9 − 2 n + 20 × 2 n )1( n ) Use shifting theorem: G ( z ) ↔ ( − 9 − 2( n − 1) + 20 × 2 n − 1 )1( n − 1) 7 Digital Control Kannan M. Moudgalya, Autumn 2007

  8. Properties of Cont. Time Sinusoidal Signals 8. u a ( t ) = A cos (Ω t + θ ) u a ( t ) = A cos (2 πF t + θ ) , − ∞ < t < ∞ A : amplitude Ω : frequency in rad/s θ : phase in rad F : frequency in cycles/s or Hertz Ω = 2 πF T p = 1 F 8 Digital Control Kannan M. Moudgalya, Autumn 2007

  9. Properties of Cont. Time Sinusoidal Signals 9. u a ( t ) = A cos (Ω t + θ ) u a ( t ) = A cos (2 πF t + θ ) , − ∞ < t < ∞ With F fixed, periodic with period T p u a [ t + T p ] = A cos (2 πF ( t + 1 F ) + θ ) = A cos (2 π + 2 πF t + θ ) = A cos (2 πF t + θ ) = u a [ t ] 9 Digital Control Kannan M. Moudgalya, Autumn 2007

  10. Properties of Cont. Time Sinusoidal Signals 10. Cont. signals with different frequencies are different 2 π t 2 π 7 t � � � � u 1 = cos , u 2 = cos 8 8 1 0.8 0.6 0.4 0.2 coswt 0 −0.2 −0.4 −0.6 −0.8 −1 0 0.5 1 1.5 2 2.5 3 3.5 4 t Different wave forms for different frequencies. Can increase f all the way to ∞ or decrease to 0. 10 Digital Control Kannan M. Moudgalya, Autumn 2007

  11. Discrete Time Sinusoidal Signals 11. u ( n ) = A cos ( wn + θ ) , −∞ < n < ∞ w = 2 πf n integer variable, sample number A amplitude of the sinusoid w frequency in radians per sample θ phase in radians. f normalized frequency, cycles/sample 11 Digital Control Kannan M. Moudgalya, Autumn 2007

  12. Discrete Time Sinusoids - Identical Signals 12. Discrete time sinusoids whose frequencies are sepa- rated by integer multiple of 2 π are identical, i.e., cos (( w 0 + 2 π ) n + θ ) = cos ( w 0 n + θ ) , ∀ n • All sinusoidal sequences of the form, u k ( n ) = A cos ( w k n + θ ) , w k = w 0 + 2 kπ , − π < w 0 < π , are indistinguishable or identical. • Only sinusoids in − π < w 0 < π are different − π < w 0 < π or − 1 2 < f 0 < 1 2 12 Digital Control Kannan M. Moudgalya, Autumn 2007

  13. Sampling a Cont. Time Signal - Preliminaries 13. Let analog signal u a [ t ] have a frequency of F Hz u a [ t ] = A cos(2 πF t + θ ) Uniform sampling rate ( T s s) or frequency ( F s Hz) t = nT s = n F s u ( n ) = u a [ nT s ] − ∞ < n < ∞ = A cos (2 πF T s n + θ ) 2 π F � � = A cos n + θ F s △ = A cos(2 πfn + θ ) 13 Digital Control Kannan M. Moudgalya, Autumn 2007

  14. Sampling a Cont. Time Signal - Preliminaries 14. In our standard notation, u ( n ) = A cos (2 πfn + θ ) It follows that f = F w = Ω = Ω T s F s F s Reason to call f normalized frequency, cycles/sample. Apply the uniqueness condition for sampled signals − 1 2 < f < 1 − π < w < π 2 F max = F s Ω max = 2 πF max = πF s = π 2 T s 14 Digital Control Kannan M. Moudgalya, Autumn 2007

  15. Properties of Discrete Time Sinusoids - Alias 15. • As w 0 ↑ , freq. of oscillation ↑ , reaches maximum at w 0 = π • What if w 0 > π ? w 1 = w 0 w 2 = 2 π − w 0 u 1 ( n ) = A cos w 1 n = A cos w 0 n u 2 ( n ) = A cos w 2 n = A cos(2 π − w 0 ) n = A cos w 0 n = u 1 ( n ) w 2 is an alias of w 1 15 Digital Control Kannan M. Moudgalya, Autumn 2007

  16. Properties of Discrete Time Sinusoids - Alias 16. u 1 [ t ] = cos (2 π t 8) , u 2 [ t ] = cos (2 π 7 t 8 ) , T s = 1 u 2 ( n ) = cos (2 π 7 n 8 ) = cos 2 π (1 − 1 8) n = cos (2 π − 2 π 8 ) n = cos (2 πn 8 ) = u 1 ( n ) 1 0.8 0.6 0.4 0.2 coswt 0 −0.2 −0.4 −0.6 −0.8 −1 0 0.5 1 1.5 2 2.5 3 3.5 4 t 16 Digital Control Kannan M. Moudgalya, Autumn 2007

  17. Fourier Transform of Aperiodic Signals 17. � ∞ x ( t ) e − j 2 πF t dt X ( F ) = −∞ � ∞ X ( F ) e j 2 πF t dF x ( t ) = −∞ If we let radian frequency Ω = 2 πF � ∞ x ( t ) = 1 X [Ω] e j Ω t d Ω , 2 π −∞ � ∞ x ( t ) e − j Ω t dt X [Ω] = −∞ x ( t ) , X [Ω] are Fourier Transform Pair 17 Digital Control Kannan M. Moudgalya, Autumn 2007

  18. Frequency Response 18. Apply u ( n ) = e jwn to g ( n ) and obtain output y : ∞ � y ( n ) = g ( n ) ∗ u ( n ) = g ( k ) u ( n − k ) k = −∞ ∞ ∞ g ( k ) e jw ( n − k ) = e jwn � � g ( k ) e − jwk = k = −∞ k = −∞ Define Discrete Time Fourier Transform � ∞ ∞ � △ g ( k ) e − jwk = � � G ( e jw ) g ( k ) z − k � = � � k = −∞ k = −∞ � z = e jw = G ( z ) | z = e jw Provided the sequence converges absolutely 18 Digital Control Kannan M. Moudgalya, Autumn 2007

  19. Frequency Response 19. ∞ g ( k ) e − jwk = e jwn G ( e jw ) � y ( n ) = e jwn k = −∞ Write in polar coordinates: G ( e jw ) = | G ( e jw ) | e jϕ - ϕ is phase angle: y ( n ) = e jwn | G ( e jw ) | e jϕ = | G ( e jwn ) | e j ( wn + ϕ ) 1. Input is sinusoid ⇒ output also is a sinusoid with following properties: • Output amplitude gets multiplied by the magnitude of G ( e jw ) • Output sinusoid shifts by ϕ with respect to input 19 Digital Control Kannan M. Moudgalya, Autumn 2007

  20. 2. At ω where | G ( e jw ) | is large, the sinusoid gets amplified and at ω where it is small, the sinusoid gets attenuated. • The system with large gains at low frequencies and small gains at high frequencies are called low pass filters • Similarly high pass filters 20 Digital Control Kannan M. Moudgalya, Autumn 2007

  21. Discrete Fourier Transform 20. Define Discrete Time Fourier Transform � ∞ ∞ � △ g ( k ) e − jwk = � � G ( e jw ) g ( k ) z − k � = � � k = −∞ k = −∞ � z = e jw = G ( z ) | z = e jw Provided, absolute convergence ∞ ∞ � � | g ( k ) e − jwk | < ∞ ⇒ | g ( k ) | < ∞ k = −∞ k = −∞ For causal systems, BIBO stability. Required for DTFT. 21 Digital Control Kannan M. Moudgalya, Autumn 2007

  22. FT of Discrete Time Aperiodic Signals - Defi- 21. nition ∞ △ � U ( e jω ) u ( n ) e − jωn = n = −∞ � π u ( m ) = 1 U ( e jω ) e jωm dω 2 π − π � 1 / 2 U ( f ) e j 2 πfm d = f − 1 / 2 22 Digital Control Kannan M. Moudgalya, Autumn 2007

  23. FT of a Moving Average Filter - Example 22. y ( n ) = 1 3[ u ( n + 1) + u ( n ) + u ( n − 1)] ∞ � y ( n ) = g ( k ) u ( n − k ) k = −∞ = g ( − 1) u ( n + 1) + g (0) u ( n ) + g (1) u ( n − 1) g ( − 1) = g (0) = g (1) = 1 3 ∞ � e jw � g ( n ) z − n | z = e jw � G = n = −∞ = 1 = 1 e jw + 1 + e − jw � � 3(1 + 2 cos w ) 3 23 Digital Control Kannan M. Moudgalya, Autumn 2007

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend