field validation database for binder testing procedures
play

Field Validation Database for Binder Testing Procedures Recommended - PowerPoint PPT Presentation

Field Validation Database for Binder Testing Procedures Recommended by NCHRP 9-10 Wilfung Martono H.U.Bahia University of Wisconsin-Madison ETG Meeting Fall 2003 Las Vegas, NV Background ! Need for Field Validation of ! Binder repeated


  1. Field Validation Database for Binder Testing Procedures Recommended by NCHRP 9-10 Wilfung Martono H.U.Bahia University of Wisconsin-Madison ETG Meeting Fall 2003 – Las Vegas, NV

  2. Background ! Need for Field Validation of ! Binder repeated creep concept for rutting ! Binder PP time sweep test concept for fatigue ! Select asphalts from MRL ! Sections with known performance ! Available binders ! 10 States -- 25 binders 2

  3. 10 States- 25 binders ! Mississippi : 6- Control , multigrade, CRM, 3 PMAs ! Missouri : 4- Control, Oxidized and PMAs ! Pennsylvania :4- AC20, 3 PMAs ! Nebraska : 3- all modified F1,F2B, F3C ! California : 2– AR8000, 6A/LLP ! Alberta : 2- 200/300p, LTPP21 modified ! Kansas : 2- AC10, PMA AC5 ! Nevada : 2- AC 20 and AC-20 P ! Texas : 2– AC5 and AC 10 Modified 3

  4. Binder Rutting Test (DSR) In this test loading of 25 Pa is applied for 1 sec And removed for 9 sec. The accumulated Strain is measured and the viscous component Is estimated under steady state condition. 0.20 Accumulated Strain Test data Fit 0.15 Strain (mm/mm) 0.10 0.05 0.00 0 10 Cycles 20 30 Time (seconds) 4

  5. Rutting Measurements Final Reported G*/sin( δ δ ) η η ss δ δ η η No Project Binder TT Notes strain Rutting (C) (kPa) (Pa.s) (mm/mm) (mm) LTTP 15 KS AC-10 58 4.55 5.79E+02 13.701 0.548 ID 16 KS AC-10 70 0.94 5.79E+02 81.045 200210 PMAC AC- 17 KS 5 58 5.40 2.49E+03 3.121 0.365 PMAC AC- 18 KS 5 70 1.90 3.63E+02 21.165 200902 5

  6. G* Sin δ Compared to η ss y = 492.89x + 571.58 40,000 2 = 0.3147 R 35,000 30,000 , Pa-s 25,000 η ss 20,000 η η η 15,000 10,000 5,000 0 G*/Sin δ δ δ δ , Kpa 0 15 30 45 6

  7. Correlation of η ss to Field Rutting- 70 C Data MS 70C 12 Field Rutting Vs. η η η η ss MO 70C 10 NV 70C y = -2.3532Ln(x) + 20.804 Field Rutting (in mm) KS 70C 2 = 0.9502 R 8 6 y = -1.6001Ln(x) + 15.22 2 = 0.4943 R 4 2 0 0 1000 2000 3000 4000 5000 6000 η ss η η η 7

  8. Correlation of η ss to Field Rutting- 58 C Data MS 58C 12 Field Rutting Vs. η η ss η η MO 58C 10 NV 58C Field Rutting (in mm) -0.3943 y = 131.38x KS 58C 2 = 0.9836 R 8 6 -0.42 y = 125.89x 2 = 0.4587 R 4 2 0 0 5000 10000 15000 20000 25000 η ss η η η 8

  9. Correlation of G* .sind to Field Rutting- 58 C Data MS 58C 12 Field Rutting Vs. G*/sin ( δ) δ) δ) δ) MO 58C 10 NV 58C y = 18.189x -0.4679 Field Rutting (in mm) R 2 = 0.9182 KS 58C 8 6 4 2 y = 322.81x -1.609 R 2 = 0.7286 0 0 10 20 30 40 50 G*/sin ( δ) δ) δ) δ) 9

  10. Binder Fatigue Test (DSR) 6.0E+06 G*, G*.sin(d) Vs. Time 5.0E+06 4.0E+06 G* (in Pa) G* (Complex Modulus) 3.0E+06 G*.sin(d) 2.0E+06 ` 1.0E+06 0.0E+00 0.0E+00 2.0E+02 4.0E+02 6.0E+02 8.0E+02 1.0E+03 1.2E+03 1.4E+03 1.6E+03 Time (in s) 10

  11. Binder Fatigue Damage Analysis (Controlled Stress) No Damage-- I nitiation-- Propagation 4500 Dissipated Energy Ratio (DER) 4000 3500 3000 2500 2000 1500 1 1000 500 N20 Np 0 0 2000 4000 6000 8000 No. of Cycles 11

  12. Binder Fatigue Test (DSR) 3.0E+04 Dissipated Energy Ratio 2.5E+04 2.0E+04 N20 1.5E+04 N10 1.0E+04 5.0E+03 Np 0.0E+00 0.0E+00 1.0E+04 2.0E+04 3.0E+04 4.0E+04 5.0E+04 6.0E+04 Number of Cycles 12

  13. Binder Fatigue Results No State Binder TT Stress G* ini d ini G*sin(d) (kPa) (kPa) (kPa) 1 MS Styrelf 25 274.00 7.75E+03 49.20 1.02E+04 25 342.50 6.71E+03 50.60 8.68E+03 2 MS Rouse Rubber 25 204.00 8.87E+03 45.20 1.25E+04 25 3 MS Control 25 274.50 1.46E+04 45.20 2.06E+04 25 366.00 1.35E+04 46.40 1.86E+04 4 MS Multigrade 25 280.50 1.57E+04 41.10 2.39E+04 γ γ γ γ 2 γ γ γ γ 25 374.00 1.45E+04 42.60 2.14E+04 2 γ 1 γ γ γ τ τ τ τ 2 γ γ γ γ τ τ τ τ τ τ τ τ 1 τ τ τ τ 1 High 2 High Low Low 1 Stress Stress Stress Stress 13

  14. Example of Fatigue Analysis No State Binder Wi ini Np Np10 Np20 Nf (kPa) (cycles) 1 MS Styrelf 23.04 83,226 86,050 103,764 116,400 42.44 5,479 1,636 6,273 7,800 Rouse 2 Rubber 10.46 72,708 67,925 90,479 105,000 3 Control 11.50 61,411 67,463 74,857 81,400 22.57 16,561 17,244 20,610 23,000 4 Multigrade 10.35 89,925 96,684 110,746 122,600 20.51 14,748 14,367 18,431 21,000 14

  15. Estimating Fatigue at a given Wi value 6.00E+04 PG 64-28 Unmod PG 64-28 Mod PG 76-22 Mod 5.00E+04 PG 76-22 Oxidized Number of cycles to 50% Gini 4.00E+04 3.00E+04 2.00E+04 1.00E+04 0.00E+00 0.00 2.00 4.00 6.00 8.00 10.00 Strain (in %) 15

  16. Fatigue Analysis Results Np 20 at Wi No State Binder K1 K2 22.5 kPa 1 MS Styrelf 2.0E+11 -4.5925 1.23E+05 1 Rouse 2 Rubber 2 3 Control 8.0E+06 -1.9135 2.07E+04 3 4 Multigrade 5.0E+07 -2.6212 1.43E+04 5 Cryopolymer 4 6 Seal-O-Flux 3.0E+08 -2.9531 3.05E+04 16

  17. Effect of Binder Type and Testing Conditions on Fatigue 1.E+06 y = 3E+06x -1.7682 Effect of R 2 = 0.6974 Binder Type 1.E+05 Np20 (in cycles) 1.E+04 1.E+03 Effect of Testing Stress 1.E+02 1.E+00 1.E+01 1.E+02 Wi (in kPa) 17

  18. No Correlation to G* sind 400,000 Cycles to Failure, Nf 300,000 y = 2.4045x + 39652 R 2 = 0.0195 200,000 100,000 0 0 5000 10000 15000 20000 25000 30000 G*.sin � � � � 18

  19. Example of Strain Effect on Analysis- Missouri Sections 1.E+07 PG 64-28 UnMod PG 64-28 Mod PG 76-22 Mod PG 76-22 Oxidized 1.E+06 Number of cycles to failure 1.E+05 1.E+04 1.E+03 1.E+00 1.E+01 1.E+02 Strain (in %) 19

  20. Fatigue Analysis Method is very Important for Ranking 1.E+07 PG 64-28 UnMod PG 64-28 Mod PG 76-22 Mod Using Strain PG 76-22 Oxidized 1.E+06 Number of cycles to failure PG 64-28 Unmod 5.E+04 1.E+05 PG 64-28 Mod PG 76-22 Mod PG 76-22 Oxidized 4.E+04 1.E+04 3.E+04 Np20 1.E+03 1.E+00 1.E+01 1.E+02 Strain (in %) 2.E+04 1.E+04 Using Wi 0.E+00 0.E+00 1.E+04 2.E+04 3.E+04 4.E+04 5.E+04 6.E+04 7.E+04 8.E+04 9.E+04 20 Wi ini (in Pa)

  21. Final Remarks ! Field Validation is necessary for ! Verification ! Deriving Specification limits ! Rutting parameter appears promising ! RTFO aging effects should be studied ! Fatigue is more complicated ! Highly dependent on temperature ! Power-law relationship- K1 and K2 are needed for analysis ! Pavement structure condition 21

  22. Future Work ! Field performance data ! ETG can/should continue this effort ! Please send comments to: ! Dr. Ed Harrigan – NCHRP 22

  23. 23 this Opportunity Thank You for Questions !

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend