fiber base duality global symmetry enhancement and
play

Fiber-Base duality, Global Symmetry Enhancement and Gopakumar-Vafa - PowerPoint PPT Presentation

Fiber-Base duality, Global Symmetry Enhancement and Gopakumar-Vafa invariant Futoshi Yagi (Technion) Based on arXiv: 1411.2450: V. Mitev, E.Pomoni, M.Taki, FY Work in progress: H.Hayashi, S-S.Kim, K.Lee, M.Taki, FY 5D N=1 SUSY SU(2) gauge


  1. Fiber-Base duality, Global Symmetry Enhancement and Gopakumar-Vafa invariant Futoshi Yagi (Technion) Based on arXiv: 1411.2450: V. Mitev, E.Pomoni, M.Taki, FY Work in progress: H.Hayashi, S-S.Kim, K.Lee, M.Taki, FY

  2. 5D N=1 SUSY SU(2) gauge theory with N f flavor

  3. 5D N=1 SUSY SU(2) gauge theory with N f flavor 5D UV fixed point exists for N f ≦ 7 ’96 Seiberg

  4. 5D N=1 SUSY SU(2) gauge theory with N f flavor 5D UV fixed point exists for N f ≦ 7 ’96 Seiberg Global symmetry enhancement at UV fixed point SO (2 N f ) × U (1) ⊂ E N f +1 N f flavors Instanton particle

  5. E E = SU ( 5 ) 8 4 SO ( 14 ) U (1) SO ( 6 ) U (1) E E SU ( 2 ) SU ( 3 ) 7 = × 3 SO ( 12 ) U (1) SO ( 4 ) U (1) E E U ( 1 ) SU ( 2 ) 6 = × 2 SO ( 2 ) U (1) SO ( 10 ) U (1) E = SO ( 10 ) E = SU ( 2 ) 5 1 U (1) SO ( 8 ) U (1)

  6. Can we see global symmetry enhancement from brane web?

  7. Can we see global symmetry enhancement from brane web? S-duality (Fiber-base duality in CY language)

  8. Brane setup for pure SU(2) SYM (1,1) 5-brane (1,-1) 5-brane = 1 D5 + 1 NS5 D5 5 NS5 NS5 6 D5 (1,1) 5-brane (1,-1) 5-brane NS5 0 1 2 3 4 5 D5 0 1 2 3 4 6

  9. pure SU(2) SYM D5 NS5 2 a a : Coulomb moduli parameter 1 g : (Bare) gauge coupling 2 g 2 + 2 a

  10. S-duality for pure SU(2) SYM D5 NS5 S-duality D5 NS5 2 a 1 2 g 2 + 2 a a : Coulomb moduli parameter g : (Bare) gauge coupling

  11. S-duality for pure SU(2) SYM D5 NS5 S-duality 1 D5 2 g 0 2 + 2 a 0 NS5 2 a 2 a 0 1 2 g 2 + 2 a a : Coulomb moduli parameter g : (Bare) gauge coupling

  12. S-duality for pure SU(2) SYM D5 NS5 S-duality 1 D5 2 g 0 2 + 2 a 0 NS5 2 a 2 a 0 1 2 g 2 + 2 a a : Coulomb moduli parameter g : (Bare) gauge coupling g 0 2 = − 1 1 g 2 1 a 0 = a + 4 g 2

  13. S-duality for pure SU(2) SYM D5 NS5 S-duality 1 D5 2 g 0 2 + 2 a 0 NS5 2 a 2 a 0 1 2 g 2 + 2 a a : Coulomb moduli parameter g : (Bare) gauge coupling g 0 2 = − 1 1 Weyl Symmetry for E 1 = SU (2) g 2 ‘97 Aharony,Hanany,Kol 1 a 0 = a + 4 g 2

  14. S-duality for pure SU(2) SYM D5 NS5 S-duality 1 D5 2 g 0 2 + 2 a 0 NS5 2 a 2 a 0 1 2 g 2 + 2 a a : Coulomb moduli parameter g : (Bare) gauge coupling g 0 2 = − 1 1 Weyl Symmetry for E 1 = SU (2) g 2 ‘97 Aharony,Hanany,Kol Coulomb moduli parameter 1 a 0 = a + is also transformed! 4 g 2

  15. Generalization to higher flavor N 0 N 1 N 2 N 3 = = = = f f f f N 5 N 4 N 6 N 7 = = = = f f f f 7-brane 7-brane ’09 Benini-Benvenuti-Tachikawa

  16. (Weyl symmetry of) Transformation induced from + S-duality SO ( 2N f ) × U ( 1 )

  17. (Weyl symmetry of) Transformation induced from + S-duality SO ( 2N f ) × U ( 1 ) Flavors Instanton particle Flavors ↔ Instanton particle (Masses) (Gauge coupling) (Masses ↔ Gauge coupling)

  18. ⇒ (Weyl symmetry of) Transformation induced from + S-duality SO ( 2N f ) × U ( 1 ) Flavors Instanton particle Flavors ↔ Instanton particle (Masses) (Gauge coupling) (Masses ↔ Gauge coupling) (Weyl symmetry of) Enhanced symmetry E N f + 1

  19. ⇒ (Weyl symmetry of) Transformation induced from + S-duality SO ( 2N f ) × U ( 1 ) Flavors Instanton particle Flavors ↔ Instanton particle (Masses) (Gauge coupling) (Masses ↔ Gauge coupling) (Weyl symmetry of) Enhanced symmetry E N f + 1 Again, Coulomb moduli parameter is also transformed!

  20. Can we write Nekrasov partition function in manifestly E Nf+1 invariant way ?

  21. Original Nekrasov partition function does not look manifestly E Nf+1 invariant because…

  22. Original Nekrasov partition function does not look manifestly E Nf+1 invariant because… 1. Coulomb moduli parameter is transformed.

  23. Original Nekrasov partition function does not look manifestly E Nf+1 invariant because… 1. Coulomb moduli parameter is transformed. β 2. Expanded in terms of instanton factor q = e − 2 g 2

  24. Original Nekrasov partition function does not look manifestly E Nf+1 invariant because… 1. Coulomb moduli parameter is transformed. β 2. Expanded in terms of instanton factor q = e − 2 g 2 2 e − β a 1. Use invariant variable instead of ˜ 8 − Nf e − β a A = q ✓ 1 g 2 → − 1 1 ◆ 4 e β a = e β ( a + 1 8 g 2 ) ˜ 1 a → a + A = q ( N f = 0) g 2 , 4 g 2 ,

  25. Original Nekrasov partition function does not look manifestly E Nf+1 invariant because… 1. Coulomb moduli parameter is transformed. β 2. Expanded in terms of instanton factor q = e − 2 g 2 2 e − β a 1. Use invariant variable instead of ˜ 8 − Nf e − β a A = q ✓ 1 g 2 → − 1 1 ◆ 4 e β a = e β ( a + 1 8 g 2 ) ˜ 1 a → a + A = q ( N f = 0) g 2 , 4 g 2 , 2. Expand in terms of ˜ A

  26. E Nf+1 invariant Nekrasov partition function ∞ X Z k ( a, m i ; ✏ 1 , ✏ 2 ) q k Z ( a, g, m i ; ✏ 1 , ✏ 2 ) = Z pert ( a, m i ; ✏ 1 , ✏ 2 ) k =0 Original form ’12 H-C Kim, S-S.Kim, K.Lee ’14 C.Hwang, J.Kim, S.Kim, J.Park

  27. E Nf+1 invariant Nekrasov partition function ∞ X Z k ( a, m i ; ✏ 1 , ✏ 2 ) q k Z ( a, g, m i ; ✏ 1 , ✏ 2 ) = Z pert ( a, m i ; ✏ 1 , ✏ 2 ) k =0 Original form ’12 H-C Kim, S-S.Kim, K.Lee ’14 C.Hwang, J.Kim, S.Kim, J.Park ∞ Z n ( g, m i ; ✏ 1 , ✏ 2 ) ˜ ˜ X A k = New form n =0 ’14 C.Hwang, J.Kim, S.Kim, J.Park E Nf+1 invariant

  28. E Nf+1 invariant Nekrasov partition function ∞ X Z k ( a, m i ; ✏ 1 , ✏ 2 ) q k Z ( a, g, m i ; ✏ 1 , ✏ 2 ) = Z pert ( a, m i ; ✏ 1 , ✏ 2 ) k =0 Original form ’12 H-C Kim, S-S.Kim, K.Lee ’14 C.Hwang, J.Kim, S.Kim, J.Park ∞ Z n ( g, m i ; ✏ 1 , ✏ 2 ) ˜ ˜ X A k = New form n =0 ’14 C.Hwang, J.Kim, S.Kim, J.Park E Nf+1 invariant " ∞ # ∞ 1 X X F n ( kg, km i ; k ✏ 1 , k ✏ 2 ) ˜ ˜ A nk = exp k n =1 k =0 " ∞ # F n ( g, m i ; ✏ 1 , ✏ 2 ) ˜ ˜ X A n ≡ PE n =1 E Nf+1 invariant

  29. Nekrasov partition function for pure SU (2)  � q + t A 2 + O ( ˜ ˜ (1 − q )(1 − t ) χ E 1 A 4 ) Z = PE 2 2 + q − 1 1 χ E 1 2 , Character of E 1 = SU (2) : = q 2 q = e − �✏ 1 , t = e �✏ 2 1 ˜ 4 e β a , A = q Manifestly E 1 invariant!!

  30. Nekrasov partition function for pure SU (2)  � q + t A 2 + O ( ˜ ˜ (1 − q )(1 − t ) χ E 1 A 4 ) Z = PE 2 1 2 + q − 1 χ E 1 2 , Character of E 1 = SU (2) : = q 2 q = e − �✏ 1 , t = e �✏ 2 1 ˜ 4 e β a , A = q Manifestly E 1 invariant!! W boson F1 D1 Instanton

  31. Nekrasov partition function for N f =1 " 1 1 2 t q 2 ⇣ ⌘ χ SU (2) − 3 4 ˜ 7 + u 2 Z = PE ( u 1 ) u 2 A 7 − 2 (1 − q )(1 − t ) # q + t 1 A 2 + O ( ˜ (1 − q )(1 − t ) χ SU (2) 2 ˜ A 3 ) + ( u 1 ) u 7 2 − 1 1 2 e − 1 χ 2 ( u 1 ) = u 1 + u 1 4 β m SU (2) : u 1 = q E 2 = SU (2) × U (1) u 2 = q − 1 2 e − 7 4 β m U (1) : 2 ˜ 7 e − β a A = q

  32. Nekrasov partition function for N f =1 " 1 1 2 t q 2 ⇣ ⌘ χ SU (2) − 3 4 ˜ 7 + u 2 Z = PE ( u 1 ) u 2 A 7 − 2 (1 − q )(1 − t ) # q + t 1 A 2 + O ( ˜ (1 − q )(1 − t ) χ SU (2) 2 ˜ A 3 ) + ( u 1 ) u 7 2 − 1 1 2 e − 1 χ 2 ( u 1 ) = u 1 + u 1 4 β m SU (2) : u 1 = q E 2 = SU (2) × U (1) u 2 = q − 1 2 e − 7 4 β m U (1) : 2 ˜ 7 e − β a A = q Hypermultiplet Vector multiplet Hypermultiplet

  33. The vector multiplet and the hypermultiplet are included in the fundamental representation of E Nf+1 corresponding to the following nodes E E = SU ( 5 ) 8 (conjectured) 4 248 3875 10 5 E E SU ( 2 ) SU ( 3 ) 7 = × 3 2 56 133 3 3 E U (1) E U ( 1 ) SU ( 2 ) 6 = × 2 -3/7, 1/7 27 27 2 E = SO ( 10 ) 5 E = SU ( 2 ) 1 2 16 10

  34. Gopakumar-Vafa’s expansion 2 3 j L j R M ( j L ,j R ) t k L + k R q k L − k R X X X X Q C C Z = PE 4 5 ( t − t − 1 )( q − q − 1 ) j L ,j R k L = − j L k R = − j R C ∈ H 2 ( X, Z ) X : Calabi-Yau manifold Q C = e − R C ω , ω : K¨ ahler form ( Q C = e − 2 β a , e − β ( a − m ) , q k e − 2 β a , · · · ) M ( j L ,j R ) : Refined Gopakumar-Vafa invariant C Gopakumar-Vafa ‘98 Iqbal, Kozcaz, Vafa ‘07 M ( j L ,j R ) Nekrasov partition function Set of integers C Non-Negative integer (After the convention change ˜ A → − ˜ A ) Consistent with the result from topological B-model [Huang, Klemm, Poretschkin ‘13]

  35. Summary SO (2 N f ) × U (1) + S-duality = E N f +1 Nekrasov partition function is invariant Refined Gopakumar-Vafa invariants from Nekrasov partition function agrees with topological B-model computation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend