fast computation of minimal interpolation bases
play

Fast computation of minimal interpolation bases , , Vincent - PowerPoint PPT Presentation


  1. ����� � ���� � ��� �� ���� ���� ��� ����������� � � � �������� � � � � � � �������������������������� ������������������������ ������ ���� ����� �� Fast computation of minimal interpolation bases § , † , ‡ Vincent Neiger ´ Claude-Pierre Jeannerod § Eric Schost † Gilles Villard § § AriC, LIP, ´ Ecole Normale Sup´ erieure de Lyon, France † University of Waterloo, Ontario, Canada ‡ Partially supported by the mobility grants Explo’ra doc from R´ egion Rhˆ one-Alpes / Globalink Research Award - Inria from Mitacs & Inria / Programme Avenir Lyon Saint-´ Etienne JNCF, Cluny, France, November 2, 2015 Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 1 / 24

  2. Problem Outline Problem 1 Application to decoding algorithms 2 Fast algorithm for small weights 3 Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 2 / 24

  3. Problem Polynomial approximation Hermite-Pad´ e approximation Input: f = ( f 1 , . . . , f m ) polynomials over K , order σ Find p = ( p 1 , . . . , p m ) polynomials such that � p 1 f 1 + · · · + p m f m = 0 mod X σ minimal deg( p ) Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 3 / 24

  4. Problem Polynomial approximation Hermite-Pad´ e approximation Input: f = ( f 1 , . . . , f m ) polynomials over K , order σ Find p = ( p 1 , . . . , p m ) polynomials such that � p 1 f 1 + · · · + p m f m = 0 mod X σ minimal deg( p ) M-Pad´ e approximation (without multiplicities) Input: f = ( f 1 , . . . , f m ) polynomials over K , points x 1 , . . . , x σ Find p = ( p 1 , . . . , p m ) polynomials such that � p 1 ( x j ) f 1 ( x j ) + · · · + p m ( x j ) f m ( x j ) = 0 for all j minimal deg( p ) Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 3 / 24

  5. Problem Same problem. . . Define p · f in K 1 × σ Hermite-Pad´ e p · f = [coefficients of p 1 f 1 + · · · + p m f m of degree < σ ] M-Pad´ e p · f = [evaluations of p 1 f 1 + · · · + p m f m at points x 1 , . . . , x σ ] � Unified framework [Beckermann - Labahn, 2000] p interpolant for f : p · f = 0 minimal deg( p ) Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 4 / 24

  6. Problem Same problem. . . Define p · f in K 1 × σ Hermite-Pad´ e p · f = [coefficients of p 1 f 1 + · · · + p m f m of degree < σ ] M-Pad´ e p · f = [evaluations of p 1 f 1 + · · · + p m f m at points x 1 , . . . , x σ ] � Unified framework [Beckermann - Labahn, 2000] p interpolant for f : p · f = 0 minimal deg( p ) − → minimal deg w ( p ) Degree weights w = ( w 1 , . . . , w m ) deg w ( p ) = max(deg( p j ) + w j ) Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 4 / 24

  7. Problem . . . different algorithms? Hermite-Pad´ e Algorithm ⋆ : small weights Cost Output O ( m (2) σ 2 ) [Van Barel - Bultheel, 1991] ( ⋆ ) Basis [Beckermann - Labahn, 1994] O ˜( m ω σ ) Basis O ˜( m ω − 1 σ ) [Zhou - Labahn, 2012] ⋆ Basis General problem Algorithm ⋆ : small weights Cost Output O ( m (2) σ 2 ) [Beckermann - Labahn, 1997/2000] ( ⋆ ) Basis O ( m (2) σ 2 ) [K¨ otter; as in McEliece, 2003] ( ⋆ ) Basis Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 5 / 24

  8. Problem This talk Algorithm solves the general problem for small weights cost bound O ˜( m ω − 1 σ ) outputs a minimal basis Focusing on M-Pad´ e approximation without multiplicities Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 6 / 24

  9. Application to decoding algorithms Outline Problem 1 Application to decoding algorithms 2 Fast algorithm for small weights 3 Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 7 / 24

  10. Application to decoding algorithms List-decoding: Sudan algorithm given σ points { ( x 1 , y 1 ) , . . . , ( x σ , y σ ) } f solution: deg f � k and f ( x i ) = y i for � σ − e points [Sudan, 1997] Compute degree constraints m and b Interpolation step compute Q ( X , Y ) = Q 0 + Q 1 Y + · · · + Q m Y m such that Q 0 , . . . , Q m have small weighted degree: deg Q j < b − jk Q ( x i , y i ) = 0 for all points Root-finding step the solutions f are among the Y -roots of Q ( X , Y ) Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 8 / 24

  11. Application to decoding algorithms Interpolation steps in related contexts [Guruswami - Sudan, 1999] List-decoding of Reed-Solomon codes, further extends the error-correction bound Compute Q ( X , Y ) = Q 0 + Q 1 Y + · · · + Q m Y m such that Q 0 , . . . , Q m have small weighted degree Q ( x i , y i ) = 0 with multiplicity µ for all points Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 9 / 24

  12. Application to decoding algorithms Interpolation steps in related contexts [K¨ otter - Vardy, 2003] Soft-decision decoding of Reed-Solomon codes x 1 , . . . , x n are not pairwise distinct Compute Q ( X , Y ) = Q 0 + Q 1 Y + · · · + Q m Y m such that Q 0 , . . . , Q m have small weighted degree Q ( x i , y i ) = 0 with multiplicity µ i for all points Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 9 / 24

  13. Application to decoding algorithms Interpolation steps in related contexts [Guruswami - Rudra, 2006] List-decoding of folded Reed-Solomon codes: extends the error-correction bound up to the information-theoretic limit [Devet - Goldberg - Heninger, 2012] Optimally robust Private Information Retrieval ( j 1 ,..., j s ) ∈ Γ Q j 1 ,..., j s Y j 1 1 · · · Y j s Compute Q ( X , Y 1 , . . . , Y s ) = � s such that the Q ( j 1 ,..., j s ) have small weighted degree Q ( x i , y i 1 , . . . , y is ) = 0 with multiplicity µ for all points Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 9 / 24

  14. Fast algorithm for small weights Outline Problem 1 Application to decoding algorithms 2 Fast algorithm for small weights 3 Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 10 / 24

  15. Fast algorithm for small weights M-Pad´ e M-Pad´ e approximation Input: f = ( f 1 , . . . , f m ) polynomials, points x 1 , . . . , x σ , weights w Find p = ( p 1 , . . . , p m ) polynomials such that p interpolant for f : p · f = 0 p has minimal weighted-degree deg w ( p ) where p · f = [evaluations of p 1 f 1 + · · · + p m f m at points x 1 , . . . , x σ ] and deg w ( p ) = max(deg( p j ) + w j ) Iterative algorithm: cost quadratic in σ returns a basis of interpolants Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 11 / 24

  16. Fast algorithm for small weights Iterative algorithm [Beckermann-Labahn / K¨ otter] � − p 1 − � . = Identity in K [ X ] m × m . 1. P = . − p m − 2. For i from 1 to σ :   ( p 1 · f )( x i ) . .  = ( P · f )( x i ) a. Compute evaluations .  ( p m · f )( x i ) b. Choose pivot π with smallest w π such that ( p π · f )( x i ) � = 0 Update pivot weight w π = w π + 1 c. Eliminate: For j � = π do p j = p j − ( p j · f )( x i ) ( p π · f )( x i ) p π /* ∀ j � = π, ( p j · f )( x i ) = 0 */ p π = ( X − x i ) p π /* ( p π · f )( x i ) = 0 */ After i iterations: P basis of small interpolants for ( x 1 , . . . , x i ) Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 12 / 24

  17. Fast algorithm for small weights M-Pad´ e Iterative algorithm σ = 8 m = 4 w = [0 , 2 , 4 , 6] , base field F 97 Parameters: Input: (24 , 31 , 15 , 32 , 83 , 27 , 20 , 59) and f = (1 , R , R 2 , R 3 ) Iteration: i = 1 Point: 24 , 31 , 15 , 32 , 83 , 27 , 20 , 59 Weights [0 2 4 6]   1 0 0 0 0 1 0 0 Basis   0 0 1 0   0 0 0 1  1 1 1 1 1 1 1 1  80 73 73 35 66 46 91 64   Values   95 91 91 61 88 79 36 22   34 47 47 1 85 45 75 50 Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 13 / 24

  18. Fast algorithm for small weights M-Pad´ e Iterative algorithm σ = 8 m = 4 w = [0 , 2 , 4 , 6] , base field F 97 Parameters: Input: (24 , 31 , 15 , 32 , 83 , 27 , 20 , 59) and f = (1 , R , R 2 , R 3 ) Iteration: i = 1 Point: 24 , 31 , 15 , 32 , 83 , 27 , 20 , 59 Weights [0 2 4 6]   1 0 0 0 0 1 0 0 Basis   0 0 1 0   0 0 0 1  1 1 1 1 1 1 1 1  80 73 73 35 66 46 91 64   Values   95 91 91 61 88 79 36 22   34 47 47 1 85 45 75 50 Vincent Neiger (ENS de Lyon) Computing minimal interpolation bases Cluny, Nov 2015 13 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend