factoring integers by cvp algorithms for the prime number
play

Factoring Integers by CVP Algorithms for the Prime Number Lattice - PowerPoint PPT Presentation

Factoring Integers by CVP Algorithms for the Prime Number Lattice Claus P . Schnorr Department of Computer Science and Mathematics Goethe-University Frankfurt Main Quantum Cryptanalysis, Schloss Dagstuhl 1.-6. Oct. 2017 The prime number


  1. Factoring Integers by CVP Algorithms for the Prime Number Lattice Claus P . Schnorr Department of Computer Science and Mathematics Goethe-University Frankfurt Main Quantum Cryptanalysis, Schloss Dagstuhl 1.-6. Oct. 2017

  2. The prime number lattice 2 The prime number lattice L ( B n , c ) with basis B n , c = [ b 1 , ..., b n ] ∈ R ( n + 1 ) × n for factoring large integers N : � 0  ln p 1 0 0    · · · · · ·     .     ... . B n , c = , N c =    .  0 0         � 0 0 ln p n 0     N c ln p 1 N c ln p n N c ln N · · · and target vector N c ∈ R n + 1 and the first n primes p 1 , ..., p n . Consider vectors b = � n i = 1 e i b i ∈ L ( B n , c ) close to N c ; e i ∈ Z . i > 0 p e i i < 0 p − e i We identify b ∼ ( u , v ) for u := � i , v := � . i Then || b − N c || 2 ≥ ln uv + ˆ z 2 b − N c holds for the last coordinate z b − N c = u − vN vN N c ( 1 ± o ( 1 )) of b − N c , using lim n , N →∞ o ( 1 ) = 0 ˆ with equality iff uv is squarefree. We compute b ∈ L ( B n , c ) close to N c with | u − vN | ≤ p 3 n .

  3. The factoring method 3 The factoring method. Find ( u j , v j ) with p n -smooth e ′ u j , | u j − v j N | for j = 1 , ..., n + 1. Hence u j − v j N = ± � n i , j i = 1 p , i e ′ e i , j − e ′ e i , j u j = � n = � n � n i , j i , j i = 1 p i = 0 p mod N , i = 0 p = 1 mod N i i i for p 0 = − 1, e i , j , e ′ i , j ∈ N , e 0 , j = 0. Any solution t 1 , ..., t n + 1 ∈ { 0 , 1 } of the equations � n + 1 j = 1 t j ( e i , j − e ′ i , j ) = 0 mod 2 for i = 0 , ..., n (3.1) 1 � n + 1 j = 1 t j ( e i , j − e ′ i , j ) solves X 2 = 1 mod N by X = � n 2 i = 0 p mod N . i If X � = ± 1 mod N this yields factors gcd ( X ± 1 , N ) / ∈ { 1 , N } of The linear equations (3.1) can be solved within O ( n 3 ) bit N . operations if the vectors ( e 0 , j − e ′ 0 , j , ..., e n , j − e ′ 1 , n ) for j = 1 , ..., n + 1 are linearly independent. This factoring method goes back to Morrison & Brillhart [MB75]. We get � n i = 1 p ie i , j = ± � n e ′ fac-relations i = 0 p i mod N i , j z b − N c ≈ u − vN from vectors b ∈ L ( B n , c ) close to N c . Then ˆ vN N c makes | u − vN | ≤ vN 1 − c || b − N c || / √ n small for c > 1.

  4. Results of Dickman, De Bruijn, Hildebrand 4 Let Ψ( X , y ) denote the number of integers in [ 1 , X ] that are y -smooth. D ICKMAN [1930] shows lim y →∞ Ψ( y z , y ) y − z = ρ ( z ) for any fixed z > 0. ρ ( z ) is the Dickman, De Bruijn ρ - function. It is known that ρ ( z ) = 1 for 0 ≤ z ≤ 1, ρ ( z ) = 1 − ln z for 1 ≤ z ≤ 2 � e ± o ( 1 ) � z = 1 / z z + o ( z ) for z → ∞ ρ ( z ) = (4.1) z ln z H ILDEBRAND [H84] extended (4.1) to a wide finite range of z . For any fixed ε > 0 � ln ( z + 1 ) Ψ( y z , y ) y − z = ρ ( z ) � �� 1 + O (4.2) ln y holds uniformly for 1 ≤ z ≤ y 1 / 2 − ε , y ≥ 2 under the Riemann Hypothesis.

  5. The relevant area of ( u , v , | u − vN | ) 5 The area of p n -smooth triplets ( u , v , | u − vN | ) for large v . Let # N , n ,δ denote the number and REL N , n ,δ the set of such triplets 2 N δ < v ≤ N δ , 1 2 N 1 + δ < u ≤ N 1 + δ . n and 1 such that | u − vN | ≤ p 3 Neglecting for y = p n , y z = N δ , z = δ ln N ln p n the O ( ln ( z + 1 ) ) -term of ln y (4.2), the number of p n -smooth v ∈ [ 1 2 N δ , N δ ] is for z v := δ ln N ln p n , v := z v − ln 2 z ′ ln p n Ψ( N δ , p n ) − Ψ( N δ / 2 , p n ) ≈ N δ � ρ ( z v ) − 1 2 ρ ( z ′ � v ) . Hence random v ∈ R [ 1 2 N δ , N δ ] are p n -smooth with probability close to 2 ( ρ ( z v ) − 1 v )) . Random u ∈ [ 1 2 ρ ( z ′ 2 N 1 + δ , N 1 + δ ] are p n -smooth with probability close to 2 ( ρ ( z u ) − 1 2 ρ ( z ′ u )) for z u := ( 1 + δ ) ln N , z ′ u := z u − ln 2 ln p n . Hence ln p n # N , n ,δ ≈ 4 N δ p 3 � ρ ( z u ) − 1 2 ρ ( z ′ �� ρ ( z v ) − 1 2 ρ ( z ′ � n ρ ( 3 ) u ) v ) (5.1) if p n -smoothness of u , v and | u − vN | are nearly statist. indep.

  6. I: The number of p n -smooth triplets u , v , | u − vN | 6 10 14 10 20 2 100 2 200 2 400 2 800 N ≈ n 48 100 256 1350 7850 41350 p n 223 541 1619 11149 80173 497561 δ 0 . 35 0 . 55 0 . 71 1 . 2 1 . 57 2.1 # N , n ,δ 126 215 392 1608 10131 49591 0 . 8468 1 . 14 1 . 3902 1 . 998 2 . 4478 3 . 029 c ln ( N δ / p 3 n ) − 4 . 9 6 . 4 27 138 401 1132 Table 1 : parameters n , p n , δ, c = δ + 1 − 3 ln p n for factoring N ln N δ of table 1 nearly maximizes # N , n ,δ and n is nearly minimal such that # N , n ,δ clearly surpasses n . We have δ > 3 ln p n ln N . Corollary Let c = δ + 1 − ln p 3 n = N o ( 1 ) and let ln N , p 3 n || b − N c || 2 ≈ ||L ( B n , c ) − N c || 2 for nearly squarefree 2 N δ < v ≤ N δ and ( u , v ) ∼ b ∈ L ( B n , c ) such that 1 n . Then || b − N c || 2 � λ 2 | u − vN | ≤ p 3 1 ( L ) − ln N .

  7. I: Proof of the Corollary 7 z b − N c = u − vN c N c ( 1 ± o ( 1 )) that We get from ˆ vN | u − vN | ≈ vN 1 − c || b − N c || / √ n . 2 N δ < v ≤ N δ if Hence | u − vN | ≤ p 3 n holds for 1 1 + δ − c + ln ( || b − ln N c || / √ n ) / ln N ≤ 3 ln p n ln N where ln ( || b − N c || / √ n ) / ln N = o ( 1 ) . As the run time of the CVP for L ( B n , c ) , N c increases with c we choose for the search of fac-relations u , v , | u − vN | with 2 N δ < v ≤ N δ in practice c ≈ δ + 1 − 3 ln p n / ln N . 1 In fact the p n -smooth ( u , v ) that satisfy | u − vN | ≤ p 3 n and 2 N δ < v ≤ N δ yield b ∈ L ( B n , c ) , b ∼ ( u , v ) with nearly minimal 1 || b − N c || for c ≈ δ + 1 − 3 ln p n ln N .

  8. I: finding n + 1 fac-relations efficiently 8 Iterative increase of c so that vectors b ∈ L ( B n , c ) close to N c yield distinct p n -smooth u , | u − vN | (fac-relations) . The Corollary shows that || b − N c || 2 � λ 2 1 − ln N holds for 2 N δ < v ≤ N δ and n / ln N if b ∼ ( u , v ) and 1 c = δ + 1 − ln p 3 | u − vN | ≤ p 3 n . Such b are particularly close to N c and yield a fac-relation if | u − vN | is p n -smooth which happens with probability ρ ( 3 ) ≈ 0 . 0486. We get distinct fac-relations from c and c ′ ≥ c + ln 2 / ln N . The vectors b ∈ L ( B n , c ) , b ∼ ( u , v ) close to N c satisfy z b − N c | = N c | u − vN | ( 1 ± o ( 1 )) . Then | u − vN | ≤ p 3 n = N o ( 1 ) | ˆ vN implies v ≥ N c − 1 ( 1 − o ( 1 )) for c > 1. Therefore both v and u / N increase proportionate to N c − 1 . Thus v of ( u , v ) ∼ b close to N c satisfies v � N c − 1 and v ′ of ( u ′ , v ′ ) ∼ b ′ close to N c ′ satisfies v ′ � N c ′ − 1 ≥ 2 N c − 1 . Hence Rel N , n ,δ ∩ Rel N , n ,δ ′ ≈ ∅ for δ ′ ≥ δ + ln 2 / ln N . So we iteratively increase δ and c to δ ′ := δ + ln 2 / ln N and c ′ := c + ln 2 / ln N per round so that δ passes the area for which # N , n ,δ of (4.1) is substantial.

  9. I: Decreasing the dimension n of L ( B n , c ) 9 Recall: We identify b = � n i = 1 e i b i ∈ L ( B n , c ) ∼ ( u , v ) where i > 0 p e i i < 0 p − e i u := � i , v := � . i To minimize the time to get about n fac-relations we simply transform a reduced basis of L ( B n , c ) to a reduced basis of L ( B n , c ′ ) by multiplying the last coordiates of the b i of B n , c T and of N c by N c ′ − c .This replaces N c by N c ′ . We do not adjust the success rate ¨ β t to small increases of c . By iteratively increasing c we can in table 1 decrease n = dim L ( B n , c ) = 41350 for N ≈ 2 800 to n = 40000. This decreases # N , n , 2 . 1 from 49591 to 717. So we find about 700 fac-relations by minimizing ||L ( B n , c ) − N c || for c = 2 . 1 − 3 ln p n / ln N . Then we increase c to c + ln 2 / ln N to generate fac-relations in Rel N , n ,δ ′ for δ ′ := δ + ln 2 / ln N .

  10. I: Time for SVP 10 The efficiency of our SVP algorithm for L ( B ) depends on the invariant rd ( L ) := λ 1 γ − 1 / 2 ( det L ) − 1 / n which we call the relative n λ 2 1 = rd ( L ) 2 γ n ( det L ) 2 density of L . ( ) Proposition Let the basis B = QR , R ∈ R n × n of L satisfy � λ 1 � 1 � 2 and GSA and let L have a shortest lattice e π rd ( L ) ≤ � b 1 � 2 n vector b ′ that satisfies SA . Then E NUM with linear pruning finds such b ′ under the volume heuristics in polynomial time. GSA : The basis B = QR , R = [ r i , j ] 1 ≤ i , j ≤ n satisfies r i , j = 0 for i < j and r 2 i , i / r 2 i − 1 , i − 1 = q for 2 ≤ i ≤ n for some q > 0. SA : There is a vector b ′ ∈ L ( B ) such that � b ′ � = λ 1 and � π t ( b ′ ) � 2 � n − t + 1 λ 2 1 for t = 1 , . . . , n . || b || = r 1 , 1 . n Linear pruning means to cut off all stages ( e t , ..., e n ) that i = t e i b i ) || 2 > n − t + 1 satisfy || π t ( � n λ 2 1 . n

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend