extreme functions with an arbitrary number of slopes
play

Extreme functions with an arbitrary number of slopes Amitabh Basu - PowerPoint PPT Presentation

Extreme functions with an arbitrary number of slopes Amitabh Basu Michele Conforti Marco Di Summa Joseph Paat Johns Hopkins University Dipartimento di Matematica, Universita degli Studi di Padova, Italy. Aussois 2016


  1. Extreme functions with an arbitrary number of slopes Amitabh Basu ∗ Michele Conforti † Marco Di Summa † Joseph Paat ∗ ∗ Johns Hopkins University † Dipartimento di Matematica, Universit‘a degli Studi di Padova, Italy. Aussois 2016 J.Paat JHU

  2. 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 The Problem Let b ∈ (0 , 1) , k ∈ N with k ≥ 2 . Find π : [0 , 1] → R + so that (i) π (0) = π (1) = 0 , (ii) (Subadditivity) π ( r 1 + r 2 ) ≤ π ( r 1 ) + π ( r 2 ) , for all r 1 , r 2 ∈ [0 , 1] , (iii) (Symmetry) π ( r ) + π ( b − r ) = 1 , for all r ∈ [0 , 1] , (iv) (Extreme) If π 1 , π 2 satisfy (i)-(iii) and π = π 1 + π 2 then π = π 1 = π 2 . 2 (v) (k-slopes) Piecewise linear, continuous and has k different slopes. J.Paat JHU

  3. The Problem Let b ∈ (0 , 1) , k ∈ N with k ≥ 2 . Find π : [0 , 1] → R + so that (i) π (0) = π (1) = 0 , (ii) (Subadditivity) π ( r 1 + r 2 ) ≤ π ( r 1 ) + π ( r 2 ) , for all r 1 , r 2 ∈ [0 , 1] , (iii) (Symmetry) π ( r ) + π ( b − r ) = 1 , for all r ∈ [0 , 1] , (iv) (Extreme) If π 1 , π 2 satisfy (i)-(iii) and π = π 1 + π 2 then π = π 1 = π 2 . 2 (v) (k-slopes) Piecewise linear, continuous and has k different slopes. 1 Ex. k = 2 , b = 1 / 2 0.8 0.6 Why do we care? 0.4 0.2 0.2 0.4 0.6 0.8 1 J.Paat JHU

  4. The Problem Let b ∈ (0 , 1) , k ∈ N with k ≥ 2 . Find π : [0 , 1] → R + so that (i) π (0) = π (1) = 0 , (ii) (Subadditivity) π ( r 1 + r 2 ) ≤ π ( r 1 ) + π ( r 2 ) , for all r 1 , r 2 ∈ [0 , 1] , (iii) (Symmetry) π ( r ) + π ( b − r ) = 1 , for all r ∈ [0 , 1] , (iv) (Extreme) If π 1 , π 2 satisfy (i)-(iii) and π = π 1 + π 2 then π = π 1 = π 2 . 2 (v) (k-slopes) Piecewise linear, continuous and has k different slopes. 1 Ex. k = 2 , b = 1 / 2 0.8 0.6 Why do we care? 0.4 0.2 0.2 0.4 0.6 0.8 1 J.Paat JHU

  5. Let’s start by relaxing an integer linear program— Let A ∈ R n × m . Consider the feasible region Let A B be a basis from col( A ) Ax = b A B x B + A N x N = b x ∈ Z m x ≥ 0, x B ∈ Z n , x N ∈ Z m − n x ≥ 0, − A − 1 B A N x N = x B − A − 1 − A − 1 B A N x N = x B − A − 1 B b B b x B , x N ≥ 0, x N ≥ 0, x B ∈ Z n , x N ∈ Z m − n x B ∈ Z n , x N ∈ Z m − n � � · The convex hull of Step 4 is B A N x ∈ Z n − A − 1 x ∈ Z m − n : − A − 1 B A N x N ∈ Z n − A − 1 − A − 1 B b B b + Gomory’s corner polyhedron x N ≥ 0, b b �∈ Z n (i.e. x N = 0) then we · If A − 1 x N ∈ Z m − n want to separate it from the solutions J.Paat JHU

  6. Let’s start by relaxing an integer linear program— Let A ∈ R n × m . Consider the feasible region Let A B be a basis from col( A ) Ax = b A B x B + A N x N = b x ∈ Z m x ≥ 0, x B ∈ Z n , x N ∈ Z m − n x ≥ 0, − A − 1 B A N x N = x B − A − 1 − A − 1 B A N x N = x B − A − 1 B b B b x B , x N ≥ 0, x N ≥ 0, x B ∈ Z n , x N ∈ Z m − n x B ∈ Z n , x N ∈ Z m − n � � · The convex hull of Step 4 is B A N x ∈ Z n − A − 1 x ∈ Z m − n : − A − 1 B A N x N ∈ Z n − A − 1 − A − 1 B b B b + Gomory’s corner polyhedron x N ≥ 0, b b �∈ Z n (i.e. x N = 0) then we · If A − 1 x N ∈ Z m − n want to separate it from the solutions J.Paat JHU

  7. Let’s start by relaxing an integer linear program— Let A ∈ R n × m . Consider the feasible region Let A B be a basis from col( A ) Ax = b A B x B + A N x N = b x ∈ Z m x ≥ 0, x B ∈ Z n , x N ∈ Z m − n x ≥ 0, Rearrange − A − 1 B A N x N = x B − A − 1 − A − 1 B A N x N = x B − A − 1 B b B b x B , x N ≥ 0, x N ≥ 0, x B ∈ Z n , x N ∈ Z m − n x B ∈ Z n , x N ∈ Z m − n � � · The convex hull of Step 4 is B A N x ∈ Z n − A − 1 x ∈ Z m − n : − A − 1 B A N x N ∈ Z n − A − 1 − A − 1 B b B b + Gomory’s corner polyhedron x N ≥ 0, b b �∈ Z n (i.e. x N = 0) then we · If A − 1 x N ∈ Z m − n want to separate it from the solutions J.Paat JHU

  8. Let’s start by relaxing an integer linear program— Let A ∈ R n × m . Consider the feasible region Let A B be a basis from col( A ) Ax = b A B x B + A N x N = b x ∈ Z m x ≥ 0, x B ∈ Z n , x N ∈ Z m − n x ≥ 0, Rearrange Drop nonnegativity − A − 1 B A N x N = x B − A − 1 − A − 1 B A N x N = x B − A − 1 B b B b on x B x B , x N ≥ 0, x N ≥ 0, x B ∈ Z n , x N ∈ Z m − n x B ∈ Z n , x N ∈ Z m − n � � · The convex hull of Step 4 is B A N x ∈ Z n − A − 1 x ∈ Z m − n : − A − 1 B A N x N ∈ Z n − A − 1 − A − 1 B b B b + Gomory’s corner polyhedron x N ≥ 0, b b �∈ Z n (i.e. x N = 0) then we · If A − 1 x N ∈ Z m − n want to separate it from the solutions J.Paat JHU

  9. Let’s start by relaxing an integer linear program— Let A ∈ R n × m . Consider the feasible region Let A B be a basis from col( A ) Ax = b A B x B + A N x N = b x ∈ Z m x ≥ 0, x B ∈ Z n , x N ∈ Z m − n x ≥ 0, Rearrange Drop nonnegativity − A − 1 B A N x N = x B − A − 1 − A − 1 B A N x N = x B − A − 1 B b B b on x B x B , x N ≥ 0, x N ≥ 0, x B ∈ Z n , x N ∈ Z m − n x B ∈ Z n , x N ∈ Z m − n ∼ = � � · The convex hull of Step 4 is B A N x ∈ Z n − A − 1 x ∈ Z m − n : − A − 1 B A N x N ∈ Z n − A − 1 B A N x N ∈ Z n − A − 1 − A − 1 − A − 1 B b B b B b + Gomory’s corner polyhedron x N ≥ 0, x N ≥ 0, b b �∈ Z n (i.e. x N = 0) then we · If A − 1 x N ∈ Z m − n x N ∈ Z m − n want to separate it from the solutions J.Paat JHU

  10. Let’s start by relaxing an integer linear program— Let A ∈ R n × m . Consider the feasible region Let A B be a basis from col( A ) Ax = b A B x B + A N x N = b x ∈ Z m x ≥ 0, x B ∈ Z n , x N ∈ Z m − n x ≥ 0, Rearrange Drop nonnegativity − A − 1 B A N x N = x B − A − 1 − A − 1 B A N x N = x B − A − 1 B b B b on x B x B , x N ≥ 0, x N ≥ 0, x B ∈ Z n , x N ∈ Z m − n x B ∈ Z n , x N ∈ Z m − n ∼ = · The convex hull of Step 4 is B A N x N ∈ Z n − A − 1 − A − 1 B b Gomory’s corner polyhedron x N ≥ 0, b b �∈ Z n (i.e. x N = 0) then we · If A − 1 x N ∈ Z m − n want to separate it from the solutions J.Paat JHU

  11. So for R ∈ R n × k and b ∈ R n we have the feasible region � + : Rx ∈ Z n + b � x ∈ Z k . J.Paat JHU

  12. So for R ∈ R n × k and b ∈ R n we have the feasible region � + : Rx ∈ Z n + b � x ∈ Z k . If R = ( r 1 , r 2 , . . . , r k ) then R n R= . . . r 1 r 2 . . . r k . . . x = . . . ← 0 [ x ( r 1 ) x ( r 2 ) . . . x ( r k )] 0 → . . . J.Paat JHU

  13. So for R ∈ R n × k and b ∈ R n we have the feasible region � + : Rx ∈ Z n + b � x ∈ Z k . If R = ( r 1 , r 2 , . . . , r k ) then R n R= . . . r 1 r 2 . . . r k . . . x = . . . ← 0 [ x ( r 1 ) x ( r 2 ) . . . x ( r k )] 0 → . . . J.Paat JHU

  14. So for R ∈ R n × k and b ∈ R n we have the feasible region � + : Rx ∈ Z n + b � x ∈ Z k . If R = ( r 1 , r 2 , . . . , r k ) then R n R= . . . r 1 r 2 . . . r k . . . x = . . . ← 0 [ x ( r 1 ) x ( r 2 ) . . . x ( r k )] 0 → . . . Gomory and Johnson introduced the n-row infinite group relaxation � � x : R n → Z + : rx r ∈ Z n + b , x has finite support � R b ( R n , Z n ) := r ∈ R n J.Paat JHU

  15. Idea of a cut-generating function— Recall: For a fixed R , we want to separate x = 0 from + : Rx ∈ Z n + b �� x ∈ Z k �� conv . A valid inequality looks like k � γ i x i ≥ 1 , i =1 where γ i ≥ 0 for each i ∈ [ k ]. J.Paat JHU

  16. Idea of a cut-generating function— Recall: For a fixed R , we want to separate x = 0 from + : Rx ∈ Z n + b �� x ∈ Z k �� conv . A valid inequality looks like k � γ i x i ≥ 1 , i =1 where γ i ≥ 0 for each i ∈ [ k ]. We can write γ i =: π ( r i ). J.Paat JHU

  17. Idea of a cut-generating function— Recall: For a fixed R , we want to separate x = 0 from + : Rx ∈ Z n + b �� x ∈ Z k �� conv . A valid inequality looks like k � γ i x i ≥ 1 , i =1 where γ i ≥ 0 for each i ∈ [ k ]. We can write γ i =: π ( r i ). A cut-generating function π : R n → R + satisfies � π ( r i ) x i ≥ 1 , r ∈ R n for every x ∈ R b ( R n , Z n ). J.Paat JHU

  18. Idea of a cut-generating function— Recall: For a fixed R , we want to separate x = 0 from + : Rx ∈ Z n + b �� x ∈ Z k �� conv . A valid inequality looks like k � γ i x i ≥ 1 , i =1 where γ i ≥ 0 for each i ∈ [ k ]. We can write γ i =: π ( r i ). A cut-generating function π : R n → R + satisfies � π ( r i ) x i ≥ 1 , r ∈ R n for every x ∈ R b ( R n , Z n ). Andersen, Averkov, Balas, Basu, Borozan, Campelo, Conforti, Cornu´ ejols, Daniilidis, Dash, Dey, Gomory, G¨ unl¨ uk, Hildebrand, Hong, Johnson, K¨ oppe, Letchford, Li, Lodi,Miller, Molinaro, Richard, Wolsey, Yıldız, Zambelli, Zhou... J.Paat JHU

  19. A famous cut-generating function — For b ∈ (0 , 1), the Gomory function is  1 b r , 0 ≤ r < b   1 GMI b ( r ) = 1 − b (1 − r ) , b ≤ r < 1  π ( r − j ) , r ∈ [ j , j + 1) , j ∈ Z \ { 0 } .  1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 GMI 1 / 2 J.Paat JHU

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend