extremal trajectories and maxwell points in sub
play

Extremal trajectories and Maxwell points in sub-Riemannian problem - PowerPoint PPT Presentation

Extremal trajectories and Maxwell points in sub-Riemannian problem on the Engel group A. A. Ardentov Program Systems Institute Russian Academy of Sciences Pereslavl-Zalessky, Russia aaa@pereslavl.ru Workshop on Nonlinear Control and


  1. Extremal trajectories and Maxwell points in sub-Riemannian problem on the Engel group A. A. Ardentov Program Systems Institute Russian Academy of Sciences Pereslavl-Zalessky, Russia aaa@pereslavl.ru Workshop on Nonlinear Control and Singularities Toulon, October 24 – 28, 2010

  2. Problem Statement      0  x ˙ 1 1 y ˙ 0       q = ˙  = u 1  + u 2  , x    − y    z ˙    2 2 x 2 + y 2 v ˙ 0 2 q = ( x , y , z , v ) ∈ R 4 , u = ( u 1 , u 2 ) ∈ R 2 . q ( 0 ) = q 0 = ( 0 , 0 , 0 , 0 ) T , q ( t 1 ) = q 1 = ( x 1 , y 1 , z 1 , v 1 ) T , � t 1 � t 1 u 2 1 + u 2 � u 2 1 + u 2 2 2 dt → min ⇐ ⇒ dt → min . 2 0 0

  3. Geometric formulation of the problem Given: a 0 , a 1 ∈ R 2 , a 1 a 1 γ 0 ⊂ R 2 connecting a 1 to a 0 Γ 0 Γ 0 line L ⊂ R 2 S ∈ R , D Find: γ 1 ⊂ R 2 connecting a 0 to a 1 , s. t. γ 1 ∪ γ 0 = ∂ D , Γ 1 Γ 1 area ( D ) = S , a 0 a 0 L center of mass of D ∈ L , length ( γ 1 ) → min.

  4. Overview • Parameterization of extremal curves. • Symmetries of exponential mapping and construction of the Maxwell sets. • Global bound of the cut time and necessary optimality conditions for extremal curves. • Algorithm and software for numerical solution of the problem.

  5. Known results for invariant sub-Riemannian problems on Lie groups 1. Three-dimensional Lie groups: • Heisenberg group (A. M. Vershik, V. Ya. Gershkovich 1986), • SL ( 2 ) , SO ( 3 ) , S 3 (U. Boscain, F. Rossi 2008), • SE ( 2 ) (Yu. L. Sachkov 2010) 2. 5-dimensional nilpotent Lie group with growth vector ( 2 , 3 , 5 ) (Yu.L.Sachkov 2006). 3. 6-dimensional nilpotent Lie group with growth vector ( 3 , 6 ) (O.M. Myasnichenko 2002).

  6. Nilpotent sub-Riemannian problem on the Engel group 2 , x 2 + y 2 X 1 = ( 1 , 0 , − y X 2 = ( 0 , 1 , x 2 , 0 ) T , ) T . 2 Lie ( X 1 , X 2 ) = span ( X 1 , X 2 , X 3 , X 4 ) , dim Lie ( X 1 , X 2 )( q ) = 4 , [ X 1 , X 2 ] = X 3 , [ X 1 , X 3 ] = X 4 , [ X 1 , X 4 ] = [ X 2 , X 3 ] = [ X 2 , X 4 ] = 0 . Growth vector (2, 3, 4). Nilpotent approximation of nonholonomic control systems in four-dimensional space with two-dimensional control (e. g. car with trailer).

  7. Controllability and existence of optimal curves 1. X 1 ( q ) , . . . , X 4 ( q ) are linearly independent ∀ q ∈ R 4 Rashevskii–Chow theorem − − − − − − − − − − − − − − − → complete controllability. 2. Existence of optimal solutions is implied by Filippov theorem.

  8. Pontryagin’s maximum principle : Abnormal extremal trajectories v = ± t 3 y = ± t , x = 0 , z = 0 , 6 .

  9. Normal Hamiltonian system ˙ θ ∈ S 1 , θ = c , c = − α sin θ, ˙ c ∈ R , α = 0 , ˙ α ∈ R , x = − sin θ, ˙ y = cos θ, ˙ z = x cos θ + y sin θ ˙ , 2 v = cos θ x 2 + y 2 ˙ . 2 E = c 2 2 − α cos θ ∈ [ −| α | , + ∞ ) .

  10. Equation of pendulum and physical meaning of α α = g ¨ θ = − α sin θ, L = const ∈ R s ❙ ❙ L θ ❙ s ❙ ❙ mg m ❙ s θ ❙ ✻ ❄ L ❙ mg m s Figure: Mathematical pendulum Figure: Mathematical pendulum with α > 0 with α < 0

  11. Stratification of phase cylinder of pendulum q 0 M ∩ { H = 1 / 2 } = { λ = ( θ, c , α ) | θ ∈ S 1 , c , α ∈ R } . C = T ∗ C = ∪ 7 i = 1 C i , C i ∩ C j = ∅ , i � = j . C − C + = C i ∩ { α > 0 } , = C i ∩ { α < 0 } , i ∈ { 1 , . . . , 5 } , i i C ± i + = C ± C ± i − = C ± ∩ { c > 0 } , ∩ { c < 0 } , i ∈ { 2 , 3 } . i i c c C 3 � C 3 � C 3 � C 3 � � � � � C 2 � C 2 � � � C 2 � C 2 � � � C 1 C 1 C 1 C 1 � � � � 0 0 0 2 Π 2 Π �Π �Π Π Π Θ Θ C 4 C 4 � � C 4 C 4 � � C 5 C 5 � � C 5 C 5 � � C 2 � C 2 � C 2 � C 2 � � � � � C 3 � C 3 � C 3 � C 3 � � � � � Figure: Stratification for α > 0 Figure: Stratification for α < 0

  12. Elliptic coordinates in C + λ ∈ C + 1 , � � c 2 E + α 4 α + sin 2 θ k = = 2 ∈ ( 0 , 1 ) , 2 α 2 = k sn ( √ αϕ ) , 2 = dn ( √ αϕ ) , sin θ cos θ 2 = k √ α cn ( √ αϕ ) , c ϕ ∈ [ 0 , 4 K ] , where sn , cn , dn , E are elliptic Jacobi’s functions. ˙ Equation of pendulum: ˙ ϕ = 1 , k = ˙ α = 0 .

  13. Elliptic coordinates ( ϕ, k ) in the phase cylinder of pendulum c c � � � � � � 0 2 Π 2 Π 0 0 �Π �Π Π Π Θ Θ � �

  14. Elliptic coordinates in C − Coordinates in the sets C − 1 , C − 2 , C − 3 : ϕ ( θ, c , α ) = ϕ ( θ − π, c , − α ) , k ( θ, c , α ) = k ( θ − π, c , − α ) .

  15. Parametrization of extremal curves in the case α = 1 λ ∈ C + 1 (oscillations of pendulum) ⇒ x t = 2 k ( cn ϕ t − cn ϕ ) , y t = 2 ( E ( ϕ t ) − E ( ϕ )) − t , z t = 2 k ( sn ϕ t dn ϕ t − sn ϕ dn ϕ − y t 2 ( cn ϕ t + cn ϕ )) , v t = y 3 6 + 2 k 2 cn 2 ϕ y t − 4 k 2 cn ϕ ( sn ϕ t dn ϕ t − sn ϕ dn ϕ )+ t 3 cn ϕ dn ϕ sn ϕ + 1 − k 2 � 2 3 cn ϕ t dn ϕ t sn ϕ t − 2 + 2 k 2 3 k 2 t + 2 k 2 − 1 � ( E ( ϕ t ) − E ( ϕ )) . 3 k 2

  16. Symmetries of Hamiltonian system Dilation of α : √ α, 1 , √ α x , √ α y , α z , α 2 v , √ α t ) , ( θ, c , α, x , y , z , v , t ) �→ ( θ, c 3 ( ϕ, k , α ) �→ ( √ αϕ, k , 1 ) . Inversion of α : ( θ, c , α, x , y , z , v , t ) �→ ( θ − π, c , − α, − x , − y , z , − v , t ) , ( ϕ, k , α ) �→ ( ϕ, k , − α ) .

  17. Parametrization of extremal trajectories in general case with λ ∈ ∪ 3 i = 1 C i ( x t , y t , z t , v t )( ϕ, k , α ) = ( s 1 σ x σ t , s 1 σ y σ t , 1 σ 2 z σ t , s 1 σ 3 v σ t )( σϕ, k , 1 ) , � where σ = | α | , s 1 = sgn α .

  18. General case with α � = 0 λ ∈ C 1 ⇒ x t = 2 k σ α ( cn ( σϕ t ) − cn ( σϕ )) , y t = 2 σ α ( E ( σϕ t ) − E ( σϕ )) − sgn α t , z t = 2 k | α | ( sn ( σϕ t ) dn ( σϕ t ) − sn ( σϕ ) dn ( σϕ ) − − σ ky t 2 α ( cn ( σϕ t ) + cn ( σϕ ))) , v t = . . .

  19. Parametrization of extremal curves for degenerate cases v t = t 3 λ ∈ C 4 ⇒ x t = 0 , y t = t sgn α, z t = 0 , 6 sgn α. v t = − t 3 λ ∈ C 5 ⇒ x t = 0 , y t = − t sgn α, z t = 0 , 6 sgn α. λ ∈ C 6 ⇒ x t = cos ( ct + θ ) − cos θ y t = sin ( ct + θ ) − sin θ , , c c z t = ct − sin ( ct ) v t = − 2 c cos θ t − 4 sin ( ct + θ ) + sin ( 2 ct + θ ) , . 2 c 2 4 c 3 v t = cos θ t 3 . λ ∈ C 7 ⇒ x t = − t sin θ, y t = t cos θ, z t = 0 , 6

  20. Euler elasticae 3.5 3 3.5 3 3 2.5 2.5 2.5 2 2 2 1.5 1.5 1.5 1 1 1 0.5 0.5 0.5 0 0 0 0 1 2 3 4 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -3 -2 -1 0 Figure: Inflectional elasticae 2 1.2 1 1.5 0.8 1 0.6 0.4 0.5 0.2 0 0 -2 -1 0 1 2 -2 -1.5 -1 -0.5 0 0.5 Figure: Critical elastica Figure: Non-inflectional elastica

  21. Exponential mapping, Maxwell points and cut time Exp : C × R + → M = R 4 , Exp ( λ, t ) = q t , λ = ( θ, c , α ) ∈ C , t ∈ R + , q t ∈ M . MAX = { ( λ, t ) | ∃ ˜ λ � = λ, Exp ( λ, t ) = Exp (˜ λ, t ) } , t cut ( λ ) = sup { t > 0 | Exp ( λ, s ) is optimal for s ∈ [ 0 , t ] } , t cut ( λ ) ≤ t for any ( λ, t ) ∈ MAX .

  22. Group of symmetries of exponential mapping ε 1 ε 2 ε 3 ε 4 ε 5 ε 6 ε 7 G ε 1 ε 3 ε 2 ε 5 ε 4 ε 7 ε 6 Id ε 2 ε 1 ε 6 ε 7 ε 4 ε 5 Id ε 3 ε 7 ε 6 ε 5 ε 4 Id ε 4 ε 1 ε 2 ε 3 Id ε 5 ε 3 ε 2 Id ε 6 ε 1 Id ε 7 Id Table: Multiplication in G = { Id , ε 1 , ε 2 , ε 3 , ε 4 , ε 5 , ε 6 , ε 7 }

  23. Reflections of trajectories of pendulum c c Γ 2 Γ 2 Γ 6 Γ 6 Γ 4 Γ 4 Γ 0 0 2 Π 2 Π �Π �Π Π Π Θ Θ Γ 3 Γ 3 Γ 1 Γ 1 Γ 7 Γ 7 Γ 5 Γ 5

  24. Reflections of trajectories of pendulum ε 1 : γ �→ γ 1 = { ( θ 1 s , c 1 s , α 1 ) } = { ( θ t − s , − c t − s , α ) | s ∈ [ 0 , t ] } , ε 2 : γ �→ γ 2 = { ( θ 2 s , c 2 s , α 2 ) } = { ( − θ t − s , c t − s , α ) | s ∈ [ 0 , t ] } , ε 3 : γ �→ γ 3 = { ( θ 3 s , c 3 s , α 3 ) } = { ( − θ s , − c s , α ) | s ∈ [ 0 , t ] } , ε 4 : γ �→ γ 4 = { ( θ 4 s , c 4 s , α 4 ) } = { ( θ s + π, c s , − α ) | s ∈ [ 0 , t ] } , ε 5 : γ �→ γ 5 = { ( θ 5 s , c 5 s , α 5 ) } = { ( θ t − s + π, − c t − s , − α ) | s ∈ [ 0 , t ] } , ε 6 : γ �→ γ 6 = { ( θ 6 s , c 6 s , α 6 ) } = { ( − θ t − s + π, c t − s , − α ) | s ∈ [ 0 , t ] } , ε 7 : γ �→ γ 7 = { ( θ 7 s , c 7 s , α 7 ) } = { ( − θ s + π, − c s , − α ) | s ∈ [ 0 , t ] } , where γ = { ( θ s , c s , α ) | s ∈ [ 0 , t ] } .

  25. Reflections of Euler elasticae � 6 � 6 � 5 � 5 � 3 � 3 id id � 7 � 7 � 4 � 4 � 1 � 1 � 2 � 2

  26. Action of ε i in the preimage of exponential mapping ε i : C × R → C × R , ε i ( θ, c , α, t ) = ( θ i , c i , α i , t ) , ( θ 1 , c 1 , α 1 ) = ( θ t , − c t , α ) , ( θ 2 , c 2 , α 2 ) = ( − θ t , c t , α ) , ( θ 3 , c 3 , α 3 ) = ( − θ t , − c t , α ) , ( θ 4 , c 4 , α 4 ) = ( θ t + π, c t , − α ) , ( θ 5 , c 5 , α 5 ) = ( θ t + π, − c t , − α ) , ( θ 6 , c 6 , α 6 ) = ( − θ t + π, c t , − α ) , ( θ 7 , c 7 , α 7 ) = ( − θ t + π, − c t , − α ) .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend