exploring string axiverse in gw cosmology
play

Exploring string axiverse in GW cosmology Yuko Urakawa (Nagoya - PowerPoint PPT Presentation

a la Misao :-) Exploring string axiverse in GW cosmology Yuko Urakawa (Nagoya university, IAR) J.Soda & Y.U.(1710.00305) N. Kitajima, J.Soda,& Y.U.(in progress) w/ Naoya Kitajima (Nagoya U.), Jiro Soda (Koba U.) Axions (or ALPs) from


  1. a la Misao :-) Exploring string axiverse in GW cosmology Yuko Urakawa (Nagoya university, IAR) J.Soda & Y.U.(1710.00305) N. Kitajima, J.Soda,& Y.U.(in progress) w/ Naoya Kitajima (Nagoya U.), Jiro Soda (Koba U.)

  2. Axions (or ALPs) from string theory Superstring theory in compact 6D 4D low energy EFT + Axions + Moduli …. Wide mass ranges Probe of exDim Inflaton, DM candidate (Fuzzy DM) Wu et al.(00), … Conlon et al. (05) ex. Large Volume Scenario Predicts light mass axions

  3. Scalar potential of axion continuous shift sym. φ → φ + 2 π n / f NP effects φ → φ + c n ∈ Z e.g. instanton effects V( φ ) ~ Λ 4 cos φ /f Are you sure with ? cos φ /f - Dilute instanton gas approximation for φ /f << 1 V ( φ ) ∝ φ 2 ? for φ /f ≧ 1 Witten(79, 80) cos φ /f f eff ∝ N SU(N) in large N on RxT 3 Plateau structure Dubovski et al. (11), Yamazaki & Yonekura(17), …

  4. Scalar potential of axion continuous shift sym. φ → φ + 2 π n / f NP effects φ → φ + c n ∈ Z e.g. instanton effects V( φ ) ~ Λ 4 cos φ /f Potential can be more flatten than cos φ /f  � 1 i) Dilute instanton gas approximation V ( � ) = M 4 1 � (1 + ( � /F ) 2 ) p Yamazaki & Yonekura(17), Nomura, Watari, & Yamazaki (17) ii) Non-min. coupling w/gravity, Non-canonical kinetic term Kallosh & Linde + (13, 14,…) → α attractor model iii) Superposition of multiple cosine terms e.g., alignment mechanism Kim, Nilles, & Peloso (04)

  5. Plateau phenomenology : φ = inflaton V ( φ ) φ 2 /2 φ i) Reconcile the tension w/ PLANCK observation V( φ ) ∝ φ 2 → plateau structure Recall Renata’s talk

  6. plateau Nomura, Watari, & Yamazaki (17), Nomura & Yamazaki (17) Pure natural inflation  � 1 V ( � ) = M 4 1 � (1 + ( � /F ) 2 ) p r 0.20 Consistent w/ 0.15 Planck, BICEP/KECK 0.10 0.05 n s 0.95 0.96 0.97 0.98 0.99

  7. Plateau phenomenology : φ inflaton V ( φ ) φ 2 /2 φ i) Reconcile the tension w/ PLANCK observation V( φ ) ∝ φ 2 → plateau structure Recall Renata’s talk ii) Drastic reheating process - GW emission Antusch +(17), Kawasaki+(17), … - Oscillon/I-ball formation Gleiser(94), Kasuya+(03),Amin + (10, 12, 17),….

  8. Plateau phenomenology: Post inflation φ ( t ) δφ ( t, x ) Onset of oscillation inst. turbulence (b)GW H/m << 1 axion bio-marker

  9. Soda & Y.U.(17) Outline of the story Kitajima, Soda & Y.U.(in prep.) 1. Axion slowly rolls down H / m >> 1 V ( φ ) φ 2 /2 φ

  10. Soda & Y.U.(17) Outline of the story Kitajima, Soda & Y.U.(in prep.) 1. Axion slowly rolls in plateau V ( φ ) φ 2 /2 2. Onset of oscillation H osc / m < 1 Especially w/plateau (or w/fine tuned IC) cos φ /f φ H osc / m << 1

  11. α -attractor (tanh φ f ) 2 V ( φ ) = ( m a f ) 2 Background evolution 2 1 + c (tanh φ f ) 2 n Soda & Y.U.(17) RD 5 4 3 2 1 0 - 1 - 2 50 100 200 500 x= m/ H Onset of oscillation is not m ~ H , but delayed!

  12. Soda & Y.U.(17) Outline of the story Kitajima, Soda & Y.U.(in prep.) 1. Axion slowly rolls in plateau V ( φ ) φ 2 /2 2. Onset of oscillation H osc / m < 1 3. Exponential growth due to PR φ if H osc / m << 1 No disturbance due to cosmic exp.

  13. Parametric resonance Repeat: Up & Down in a half of osc. period → Periodic ext. force → Enhancing the amplitude “Parametric resonance instability” Mathieu equation d 2 A ~ n 2 resonance band dx 2 ˜ ϕ + ( A � 2 q cos 2 x ) ˜ ϕ = 0 ex. First band ϕ / e γ x with ˜ by γ ' q/ 2 = xplains the c dependence of the growth Energy transfer φ ( t ) δφ ( t, x )

  14. Linear perturbation Soda & Y.U.(17) PR in k r /( a osc m ) ~ O (1), k r /( a osc H ) >> 1 PR 10 14 10 10 tachyonic growth 10 6 100.00 0.01 10 - 6 ~ 50 100 200 500 k = k /( a i m )

  15. Energy transfer Kitajima, Soda & Y.U.(in prep.) Lattice simulation N grid =(128) 3 10 1 10 0 saturation 10 -1 10 -2 10 -3 10 -4 ⟨ φ ⟩ 10 -5 ( ⟨ δφ 2 ⟩ ) 1/2 10 -6 ρ ( ⟨ φ ⟩ ) δρ ( φ ) 10 -7 5 10 15 20 25 30 m τ

  16. Outline of the story 1. Axion slowly rolls in plateau V ( φ ) φ 2 /2 2. Onset of oscillation H osc / m < 1 3. Exponential growth due to PR φ if H osc / m < 1 Energy transfer φ ( t ) δφ ( t, x ) 4. Rescattering → PR becomes inefficient eg. Kofman, Linde, Starobinsky δφ δρ ~ O(1) , φ ρ

  17. Outline of the story 1. Axion slowly rolls in plateau V ( φ ) φ 2 /2 2. Onset of oscillation H osc / m < 1 plateau 3. Exponential growth due to PR φ if H osc / m < 1 No disturbance due to cosmic exp. 4. Rescattering → PR becomes inefficient eg. Kofman, Linde, Starobinsky 5. Turbulence turbulence → GW emission Micha & Tkachev (02,04) see also Caprini & Durrer(06)

  18. Kolmogorov turbulence stationary turbulence: source k r (IR) → sink k r (UV) in k-space kinetic theory dn k /dt = I k [ n ] Collision integral take λφ 4 theory, now w/ φ ( t ) k r k s λ λ 4-body 3-body assump: const. flux in k for massless φ Micha & Tkachev (02,04) s=5/3 for 4-body dn/dlnk=k 3 n ( k ) ∝ k 3 - s s=3/2 for 3-body

  19. Lattice simulation Kitajima, Soda, Y.U. (in preparation) Momentum trans due to turbulence 3-body 10 -2 ∝ k 3/2 scattering 10 -4 dn φ / d ln k [ m  f  ] φ ( t ) ≠ 0 10 -6 10 -8 10 -10 10 -12 10 -14 PR 10 -16 1 10 100 N grid =(256) 3 k / m

  20. GW spectrum Kitajima, Soda, Y.U. (in preparation) momentum transfer converges earlier for GW 10 -5 f~0.01M pl 10 -6 10 -7 Ω GW 10 -8 em x Ω r at present 10 -9 10 -10 10 -11 1 10 100 k / m

  21. New window of string axiverse Kitajima, Soda, Y.U. (in preparation) 10 -6 DECIGO SKA 10 -8 ET LISA 10 -10 Ω GW h 2 10 -12 u-DECIGO 10 -14 10 -16 10 -18 10 -20 10 -10 10 -8 10 -6 10 -4 10 -2 10 0 10 2 10 4 f [Hz] Axions from string theory f ~ 10 15 -10 16 GeV e.g.,Svrcek & Witten (06)

  22. Plateau phenomenology: φ = DM φ ( t ) δφ ( t, x ) Onset of oscillation inst. turbulence Equal time ~ DM (b)GW H/m << 1 axion if Ω c ~ Ω axion bio-marker (N implications to small scales issues?

  23. preliminary GWs from axion DM Kitajima, Soda, Y.U. (in preparation) Lattice sim. Ω GW ~ 10 -10 x (f/0.01M p ) 4 Abundance of axion freq. of GW f 0 mass m + abundance of axion decay const. f Crude Order estimation β φ = Ω φ / Ω c ≦ 1 using φ ( t, x ) ~ f ( a osc / a ) 3/2 2 � κ � nHz � 4 � Ω GW ≃ 3 . 41 × 10 − 16 ∆ 2 β 2 φ f 0 10 Δ : Sym. suppression (< 1) κ = k peak / m e.g., α - attractor Δ 2 ~0.2, κ = 12

  24. Outline of the story 1. Axion slowly rolls in plateau V ( φ ) φ 2 /2 2. Onset of oscillation H osc / m < 1 3. Exponential growth due to PR φ if H osc / m < 1 No disturbance due to cosmic exp. 4. Rescattering → PR becomes inefficient eg. Kofman, Linde, Starobinsky 5. Momentum transfer due to turbulence → GW emission Micha & Tkachev (02,04) 6. GW& φ decoupled, Oscillon/I-ball formation Gleiser(94), Kasuya+(03),Amin + (10, 12, 17),….

  25. Preliminary Oscillon formation Kitajima, Soda, Y.U. (in preparation) a ~ a 0 a ~ 20 a 0 rescattering a ~ 90 a 0 a ~ 35a 0 turbulence oscillon N grid =(128) 3

  26. Plateau phenomenology: φ = DM φ ( t ) δφ ( t, x ) Onset of oscillation inst. turbulence Equal time ~ DM (b)GW H/m << 1 axion if Ω c ~ Ω axion bio-marker (N implications to small scales issues?

  27. Outline of the story 1. Axion slowly rolls in plateau V ( φ ) φ 2 /2 2. Onset of oscillation H osc / m < 1 3. Exponential growth due to PR φ if not H osc / m << 1 4. PR finished due to red-shift Yet, for DM= axion, imprints on structure formation Resonance peak in spectrum

  28. Future issues: More on φ =DM Alternative solution to small scale issues of Λ CDM?? ULA w/ m ~ 10 -22 eV → Emergent pressure smooths at k > k J k J : Jeans scale → Tension with small scale observations? Recall Takeshi’s talk Irsic et al. (17), Kim et al. (17), … for λ = 0 Non-negligible impact of self-interaction Zhang&Chiueh(17) ,Schieve&Chiueh(17),Desjacques + (17) Resonance scale k r > k J ∝ a 1/4 Evade tension?

  29. Summary φ ( t ) δφ ( t, x ) Onset of oscillation inst. turbulence Equal time ~ DM (b)GW H/m << 1 axion if Ω c ~ Ω axion bio-marker (N implications to small scales issues?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend