experimental implementation of ufad regulation based on
play

Experimental implementation of UFAD regulation based on robust - PowerPoint PPT Presentation

Experimental implementation of UFAD regulation based on robust controlled invariance Pierre-Jean Meyer Hosein Nazarpour Antoine Girard Emmanuel Witrant Universit e de Grenoble ECC 2014, June 26 th 2014 June 26 th 2014 Pierre-Jean Meyer


  1. Experimental implementation of UFAD regulation based on robust controlled invariance Pierre-Jean Meyer Hosein Nazarpour Antoine Girard Emmanuel Witrant Universit´ e de Grenoble ECC 2014, June 26 th 2014 June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 1 / 18

  2. Outline Temperature model and monotonicity 1 Invariance (CDC13) 2 Stabilization 3 Experimental implementation 4 June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 2 / 18

  3. UnderFloor Air Distribution June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 3 / 18

  4. Model Temperature variations in room i : energy conservation; mass conservation. June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 4 / 18

  5. Model Temperature variations in room i : dT i � dt = j a i , j ( T j − T i ) Conduction through walls + b i u i ( T u − T i ) Controlled fan air flow u i + � j δ d ij c i , j ∗ h ( T j − T i ) Open doors (flow hot → cold) + δ s i d i ( T 4 s i − T 4 i ) Radiation from heat sources June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 4 / 18

  6. Model Temperature variations in room i : dT i � dt = j a i , j ( T j − T i ) Conduction through walls + b i u i ( T u − T i ) Controlled fan air flow u i + � j δ d ij c i , j ∗ h ( T j − T i ) Open doors (flow hot → cold) + δ s i d i ( T 4 s i − T 4 i ) Radiation from heat sources a , b , c , d > 0; δ s , δ d : discrete state of the disturbances (heat sources and doors); � h ( x ≤ 0) = 0 : door heat transfer only in the colder room. h ( x > 0) = x 3 / 2 June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 4 / 18

  7. Monotonicity Generic system ˙ x = f ( x , v ) with trajectories Φ( t , x , v ). Definition (Monotonicity) The system Φ is monotone if its trajectories preserve some partial orders: v � v v ′ , x � x x ′ ⇒ ∀ t ≥ 0 , Φ( t , x , v ) � x Φ( t , x ′ , v ′ ) June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 5 / 18

  8. Monotonicity Generic system ˙ x = f ( x , v ) with trajectories Φ( t , x , v ). Definition (Partial order) x � x x ′ ⇔ ∀ i , ( − 1) ε i ( x i − x ′ i ) ≥ 0 , with ε i ∈ { 0 , 1 } June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 6 / 18

  9. Monotonicity Generic system ˙ x = f ( x , v ) with trajectories Φ( t , x , v ). Definition (Partial order) x � x x ′ ⇔ ∀ i , ( − 1) ε i ( x i − x ′ i ) ≥ 0 , with ε i ∈ { 0 , 1 } Proposition (Angeli and Sontag, 2003) The system defined by ˙ x = f ( x , v ) is monotone if and only if, ( − 1) ε i + ε j ∂ f i  ( x , v ) ≥ 0 , ∀ i , ∀ j � = i ,   ∂ x j ∀ x ∈ R n , ∀ v ∈ R m , ( − 1) ε i + γ k ∂ f i ( x , v ) ≥ 0 , ∀ i , ∀ k .   ∂ v k Where ε ∈ { 0 , 1 } n and γ ∈ { 0 , 1 } m define the partial orders for x and v . June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 6 / 18

  10. Monotonicity Our model: ˙ T = f ( T , u , w , δ ) T : state (temperature); u : controlled input (fan air flow); w : exogenous input (other temperatures); δ : discrete disturbance embedded in a continuous space. June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 7 / 18

  11. Monotonicity Our model: ˙ T = f ( T , u , w , δ ) T : state (temperature); u : controlled input (fan air flow); w : exogenous input (other temperatures); δ : discrete disturbance embedded in a continuous space. T � T T ′ ⇔ ∀ i , T i ≥ T ′ i u � u u ′ ⇔ ∀ t ≥ 0 , ∀ k , u k ( t ) ≤ u ′ k ( t ) w � w w ′ ⇔ ∀ t ≥ 0 , ∀ k , w k ( t ) ≥ w ′ k ( t ) δ � δ δ ′ ⇔ ∀ t ≥ 0 , ∀ k , δ k ( t ) ≥ δ ′ k ( t ) Φ( t , T , u , w , δ ) � T Φ( t , T ′ , u ′ , w ′ , δ ′ ) June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 7 / 18

  12. Outline Temperature model and monotonicity 1 Invariance (CDC13) 2 Stabilization 3 Experimental implementation 4 June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 8 / 18

  13. Robust Controlled Invariance Definition (Robust Controlled Invariance) The system is Robust Controlled Invariant in [ T , T ] if, ∀ T 0 ∈ [ T , T ] , ∀ w ∈ [ w , w ] , ∀ δ ∈ [ δ, δ ] , ∃ u ∈ [ u , u ] | ∀ t ≥ 0 , Φ( t , T 0 , u , w , δ ) ∈ [ T , T ] . June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 9 / 18

  14. Robust Controlled Invariance Definition (Robust Controlled Invariance) The system is Robust Controlled Invariant in [ T , T ] if, ∀ T 0 ∈ [ T , T ] , ∀ w ∈ [ w , w ] , ∀ δ ∈ [ δ, δ ] , ∃ u ∈ [ u , u ] | ∀ t ≥ 0 , Φ( t , T 0 , u , w , δ ) ∈ [ T , T ] . June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 9 / 18

  15. Robust Controlled Invariance Definition (Robust Controlled Invariance) The system is Robust Controlled Invariant in [ T , T ] if, ∀ T 0 ∈ [ T , T ] , ∀ w ∈ [ w , w ] , ∀ δ ∈ [ δ, δ ] , ∃ u ∈ [ u , u ] | ∀ t ≥ 0 , Φ( t , T 0 , u , w , δ ) ∈ [ T , T ] . June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 9 / 18

  16. Robust Controlled Invariance Definition (Robust Controlled Invariance) The system is Robust Controlled Invariant in [ T , T ] if, ∀ T 0 ∈ [ T , T ] , ∀ w ∈ [ w , w ] , ∀ δ ∈ [ δ, δ ] , ∃ u ∈ [ u , u ] | ∀ t ≥ 0 , Φ( t , T 0 , u , w , δ ) ∈ [ T , T ] . June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 9 / 18

  17. Robust Controlled Invariance Proposition The system is Robust Controlled Invariant in [ T , T ] if and only if � f i ( T , u i , w , δ ) ≤ 0 ∀ i , f i ( T , u i , w , δ ) ≥ 0 June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 10 / 18

  18. Robust Controlled Invariance Proposition The system is Robust Controlled Invariant in [ T , T ] if and only if � f i ( T , u i , w , δ ) ≤ 0 ∀ i , f i ( T , u i , w , δ ) ≥ 0 Definition (Decentralized Linear Saturated Controller)  T i ≥ T i ⇒ u i = u i    T i ≤ T i ⇒ u i = u i = 0 ∀ i , T i − T i  T i ∈ [ T i , T i ] ⇒ u i = u i ∗   T i − T i June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 10 / 18

  19. Controllable Spaces (2-room example) f 1 ( T , u 1 , w , δ ) ≥ 0 June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 11 / 18

  20. Controllable Spaces (2-room example) f 1 ( T , u 1 , w , δ ) ≥ 0 f 2 ( T , u 2 , w , δ ) ≥ 0 June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 11 / 18

  21. Controllable Spaces (2-room example) f 1 ( T , u 1 , w , δ ) ≤ 0 June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 11 / 18

  22. Controllable Spaces (2-room example) f 1 ( T , u 1 , w , δ ) ≤ 0 f 2 ( T , u 2 , w , δ ) ≤ 0 June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 11 / 18

  23. Controllable Spaces (2-room example) f 1 ( T , u 1 , w , δ ) ≤ 0 f 2 ( T , u 2 , w , δ ) ≤ 0 f 1 ( T , u 1 , w , δ ) ≥ 0 f 2 ( T , u 2 , w , δ ) ≥ 0 June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 11 / 18

  24. Controllable Spaces (2-room example) f 1 ( T , u 1 , w , δ ) ≤ 0 f 2 ( T , u 2 , w , δ ) ≤ 0 f 1 ( T , u 1 , w , δ ) ≥ 0 f 2 ( T , u 2 , w , δ ) ≥ 0 June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 11 / 18

  25. Outline Temperature model and monotonicity 1 Invariance (CDC13) 2 Stabilization 3 Experimental implementation 4 June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 12 / 18

  26. Stabilization June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 13 / 18

  27. Stabilization June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 13 / 18

  28. Stabilization June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 13 / 18

  29. Stabilization June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 13 / 18

  30. Stabilization June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 13 / 18

  31. Stabilization June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 13 / 18

  32. Outline Temperature model and monotonicity 1 Invariance (CDC13) 2 Stabilization 3 Experimental implementation 4 June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 14 / 18

  33. Identification Identification (least-squares) over 57079 data points ( ≈ 16 h ) Evaluation on another scenario: June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 15 / 18

  34. Control Robust controlled invariant interval: T = 21 , T = [24; 26; 26; 27] Initial state above the interval: T 0 ≈ [26; 27; 28; 28] Decentralized linear saturated controller June 26 th 2014 Pierre-Jean Meyer (Univ. de Grenoble) Robust controlled invariance 16 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend