exact expressions in source and channel coding problems
play

Exact Expressions in Source and Channel Coding Problems Using - PowerPoint PPT Presentation

Exact Expressions in Source and Channel Coding Problems Using Integral Representations Speaker: Igal Sason Joint Work with Neri Merhav EE Department, Technion - Israel Institute of Technology 2020 IEEE International Symposium on Information


  1. Exact Expressions in Source and Channel Coding Problems Using Integral Representations Speaker: Igal Sason Joint Work with Neri Merhav EE Department, Technion - Israel Institute of Technology 2020 IEEE International Symposium on Information Theory ISIT 2020 Online Virtual Conference June 21-26, 2020 N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 1 / 18

  2. Motivation In information-theoretic analyses, one frequently needs to calculate: Expectations or, more generally, ρ -th moments, for some ρ > 0 ; Logarithmic expectations of sums of i.i.d. positive random variables. N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 2 / 18

  3. Motivation In information-theoretic analyses, one frequently needs to calculate: Expectations or, more generally, ρ -th moments, for some ρ > 0 ; Logarithmic expectations of sums of i.i.d. positive random variables. Commonly Used Approaches Resorting to bounds (e.g., Jensen’s inequality). A modern approach for logarithmic expectations is to use the replica method, which is a popular (but non–rigorous) tool, borrowed from statistical physics with considerable success. N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 2 / 18

  4. Motivation In information-theoretic analyses, one frequently needs to calculate: Expectations or, more generally, ρ -th moments, for some ρ > 0 ; Logarithmic expectations of sums of i.i.d. positive random variables. Commonly Used Approaches Resorting to bounds (e.g., Jensen’s inequality). A modern approach for logarithmic expectations is to use the replica method, which is a popular (but non–rigorous) tool, borrowed from statistical physics with considerable success. Purpose of this Work Pointing out an alternative approach, by using integral representations, and demonstrating its usefulness in information-theoretic analyses. N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 2 / 18

  5. Useful Integral Representation for the Logarithm � ∞ e − u − e − uz ln z = d u, Re( z ) ≥ 0 . u 0 N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 3 / 18

  6. Useful Integral Representation for the Logarithm � ∞ e − u − e − uz ln z = d u, Re( z ) ≥ 0 . u 0 Proof � 1 d v ln z = ( z − 1) 1 + v ( z − 1) 0 � 1 � ∞ e − u [1+ v ( z − 1)] d u d v = ( z − 1) 0 0 � ∞ � 1 e − uv ( z − 1) d v d u e − u = ( z − 1) 0 0 � ∞ � 1 − e − u ( z − 1) � e − u = d u u 0 � ∞ e − u − e − uz = d u. u 0 N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 3 / 18

  7. Useful Integral Representation for the Logarithm � ∞ e − u − e − uz ln z = d u, Re( z ) ≥ 0 . u 0 Logarithmic Expectation � ∞ � � d u e − u − M X ( − u ) E { ln X } = u , 0 � e uX � where M X ( u ) := E is the moment-generating function (MGF). N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 3 / 18

  8. Useful Integral Representation for the Logarithm � ∞ e − u − e − uz ln z = d u, Re( z ) ≥ 0 . u 0 Logarithmic Expectation � ∞ � � d u e − u − M X ( − u ) E { ln X } = u , 0 � e uX � where M X ( u ) := E is the moment-generating function (MGF). Logarithmic Expectation of a sum of i.i.d. random variables Let X 1 , . . . , X n be i.i.d. random variables, then � ∞ � � d u e − u − M n E { ln( X 1 + . . . + X n ) } = X 1 ( − u ) u . 0 N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 3 / 18

  9. Example 1: Logarithms of Factorials n � ln( n !) = ln k k =1 � ∞ n � ( e − u − e − uk ) d u = u 0 k =1 � d u � ∞ � n − 1 − e − un e − u = u . 1 − e − u 0 N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 4 / 18

  10. Example 1: Logarithms of Factorials n � ln( n !) = ln k k =1 � ∞ n � ( e − u − e − uk ) d u = u 0 k =1 � d u � ∞ � n − 1 − e − un e − u = u . 1 − e − u 0 Example 2: Entropy of Poisson Random Variable N ∼ Poisson( λ ) H ( N ) = λ − E { N } ln λ + E { ln N ! } � � � ∞ λ − 1 − e − λ (1 − e − u ) = λ ln e d u e − u λ + u . 1 − e − u 0 N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 4 / 18

  11. ρ -th moment for all ρ ∈ (0 , 1) � ∞ e − u − M X ( − u ) ρ E { X ρ } = 1 + d u, u 1+ ρ Γ(1 − ρ ) 0 where Γ( · ) denotes Euler’s Gamma function: � ∞ t u − 1 e − t d t, Γ( u ) := u > 0 . 0 N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 5 / 18

  12. ρ -th moment for all ρ ∈ (0 , 1) � ∞ e − u − M X ( − u ) ρ E { X ρ } = 1 + d u, u 1+ ρ Γ(1 − ρ ) 0 where Γ( · ) denotes Euler’s Gamma function: � ∞ t u − 1 e − t d t, Γ( u ) := u > 0 . 0 ρ -th moment of the sum of i.i.d. RVs for all ρ ∈ (0 , 1) If { X i } n i =1 are i.i.d. nonnegative real-valued random variables, then �� n � ρ � � ∞ e − u − M n � X 1 ( − u ) ρ X i = 1 + d u. E u 1+ ρ Γ(1 − ρ ) 0 i =1 N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 5 / 18

  13. Passage to Logarithmic Expectations Since x ρ − 1 ln x = lim , x > 0 , ρ ρ → 0 then, swapping limit and expectation (based on the Monotone Convergence Theorem) gives E { X ρ } − 1 E { ln X } = lim ρ ρ → 0 + � ∞ e − u − M X ( − u ) = d u. u 0 N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 6 / 18

  14. Extension to Fractional ρ -th moments with ρ > 0 ⌊ ρ ⌋ � 1 α ℓ E { X ρ } = 1 + ρ B ( ℓ + 1 , ρ + 1 − ℓ ) ℓ =0 � ⌊ ρ ⌋ � � ∞ � ( − 1) j α j � � + ρ sin( πρ ) Γ( ρ ) d u e − u − M X ( − u ) u j u ρ +1 , π j ! 0 j =0 where for all j ∈ { 0 , 1 , . . . , } j ( − 1) j − ℓ M ( ℓ ) � � ( X − 1) j � 1 X (0) α j := E = B ( ℓ + 1 , j − ℓ + 1) , j + 1 ℓ =0 and B ( · , · ) denotes the Beta function: � 1 t u − 1 (1 − t ) v − 1 d t, B ( u, v ) := u, v > 0 . 0 N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 7 / 18

  15. Moments of Estimation Errors Let X 1 , . . . , X n be i.i.d. random variables with an unknown expectation θ to be estimated, and consider the simple estimator, n � θ n = 1 � X i . n i =1 N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 8 / 18

  16. Moments of Estimation Errors Let X 1 , . . . , X n be i.i.d. random variables with an unknown expectation θ to be estimated, and consider the simple estimator, n � θ n = 1 � X i . n i =1 Let �� � 2 D n := θ n − θ and ρ ′ := ρ 2 . Then, �� � � ρ � � � �� D ρ ′ E θ n − θ = E . n N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 8 / 18

  17. Moments of Estimation Errors (Cont.) By our formula, if ρ > 0 is a non–integral multiple of 2, then ⌊ ρ/ 2 ⌋ � �� � � ρ � 2 α ℓ �� θ n − θ = � � E 2 + ρ B ℓ + 1 , ρ/ 2 + 1 − ℓ ℓ =0 � ⌊ ρ/ 2 ⌋ � � πρ � � ρ � � ( − 1) j α j � � ∞ � + ρ sin Γ d u e − u − M D n ( − u ) u j 2 2 u ρ/ 2+1 , 2 π j ! 0 j =0 where j ( − 1) j − ℓ M ( ℓ ) � D n (0) 1 α j = B ( ℓ + 1 , j − ℓ + 1) , j ∈ { 0 , 1 , . . . } , j + 1 ℓ =0 � ∞ � ω � 1 e − jωθ φ n e − ω 2 / (4 u ) d ω, 2 √ πu M D n ( − u ) = ∀ u > 0 , X 1 n −∞ and φ X 1 ( ω ) := E { e jωX 1 } ( ω ∈ R ) is the characteristic function of X 1 . N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 9 / 18

  18. Moments of Estimation Errors: Example Consider the case where { X i } n i =1 are i.i.d. Bernoulli random variables with P { X 1 = 1 } = θ, P { X 1 = 0 } = 1 − θ where the characteristic function is given by � e juX � � � e ju − 1 φ X ( u ) := E = 1 + θ , u ∈ R . N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 10 / 18

  19. Moments of Estimation Errors: Example Consider the case where { X i } n i =1 are i.i.d. Bernoulli random variables with P { X 1 = 1 } = θ, P { X 1 = 0 } = 1 − θ where the characteristic function is given by � e juX � � � e ju − 1 φ X ( u ) := E = 1 + θ , u ∈ R . An Upper Bound via a Concentration Inequality �� � � ρ � �� ≤ K ( ρ, θ ) · n − ρ/ 2 , E θ n − θ which holds for all n ∈ N , ρ > 0 and θ ∈ [0 , 1] , with � ρ � � � ρ/ 2 . K ( ρ, θ ) := ρ Γ 2 θ (1 − θ ) 2 N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 10 / 18

  20. Moments of Estimation Errors: Plots -1 10 θ n − θ | -2 10 E | � Exact Upper bound -3 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 θ � � �� � versus its upper bound as functions of θ with n = 1000 . Figure: E θ n − θ N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 11 / 18

  21. Moments of Estimation Errors: Plots -1 10 Exact Upper bound -2 10 -3 10 1 2 3 4 10 10 10 10 � � �� � versus its upper bound as functions of n with θ = 1 Figure: E θ n − θ 4 . N. Merhav & I. Sason ISIT 2020 June 21-26, 2020 12 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend