event
play

Event A of outcomes set : , 5,6 } { 7,3 X 3. s - PowerPoint PPT Presentation

Random Variables Random A Variable variable : stochastic with outcome a E { , 63 2,3 4,5 1 = , , Event A of outcomes set : , 5,6 } { 7,3 X 3. s Probability that The chance an : event occurs 4/6 PCX


  1. Random Variables Random A Variable variable : stochastic with outcome a E { , 63 2,3 4,5 1 × × = , , Event A of outcomes set : , 5,6 } { 7,3 X 3. s → Probability that The chance an : event occurs 4/6 PCX >, 3) =

  2. Distributions A distribution outcomes maps probabilities to P(X=x ) 116 = ) ( abused shorthand Commonly used ; or Pc P(X=x x ) ) →

  3. Condition 'al Probabilities Probability joint B ) 13 ) PC A. Plan :-. pp Events Probability Conditional PC A. B) B) Al P( :-. PC B)

  4. Sum Rule General PCB = PLA Au Case :X 0.4 0,6 0.4 0.7 0,5 t = - B ) P ( ) , B) PCA ) + - p P p Either hair Has Is short a man a man hair has short or 0.6 0,5 Marginal Corrolaiiies f [ P(4=y)={P(4=y ,X=x ) P P(X=x ) (A) = A T T e ' T Rand outcome Events uw

  5. Bayes Rule Pl Pla ,R ) B) Al . PGA = - PC B) Rule Product . B) ) PCB ) P AIB ( = , PCBIA ) PCA ) = Bayes Rule ' A. B ) ) PCAIB Pl = ) PCB Pla ) PLBIA ) = PC B)

  6. A :-( oooo :| Event Example Prior You have disease rare a positive ) PGA P( A) 0.9999 PCAIB = = for B Test disease is : as a -0.0001 )= Livelihood A) PIBIAIPIA PCB gain qa 1 a = 0.004 ( - A) P ( P( B. A) PGA ) Bl 0.01 a o.O = , PIBIAIPIA )tPlB) ) PIB = PHA ) Question ? What ) is : Pla ) Pl Bt A) ' , o ooo B) . Al p( o.cl = - = = - PC B ) 0.01+0.0001

  7. Densities Probability Suppose X variable that continuous is a P(X=x ) then for outcome 0 is × any outcome f p(X=n ) Normal 10,1 ) X~ o = ) to pl3sXs4 a Define event density function +8 ) P( 8s×< x x - him pxcxs = . 28 8 → o

  8. P ) Probability ( Space Eil R F , , R Sample space ) possible outcomes ( set of F Set events of possible subet ( of every ) the sample space Probability P measure Probability Event = ? g p ( Y E ;) ( Ei ) P P P F [ , D : → o ( ¢ ) ( Empty P { when disjoint set =o pvebo ) has P ) ( R 1 = 1 sample space 1 ) prob has

  9. { x ; 3¥ @ Measures Examples Reference of probalitu ( ? not Lebesgue Measure : ( interval ) b- of a ,b ] ) µ( Width [ a = Counting : ( µ ( elements ) ) Number of = Measure Product Measure : Product ) ( ( E ) µ{ Cartesian µ IE , ) . ) µ E = , ( E E , Ez ) := ,

  10. Definition |× Probability Measure of measure Differential probability g g of net the measure PCA ) := pyx ) dµc× , a e \ 4 4 Density Outcome Event function Notation Machine Learning ×=x ✓ |a P ( A) dx ) pcx = T Ref implied measure

  11. Values Expected := / X~ X ) E [ dx pcx ) pcx ) x pay . . . @ C Implied by Statistician � 1 � defines Expectation Conditional first this := ) f E[ f ( x. I 4=y ] 4) ( dx g) x. T - Observed data Expectation different distribution w.int a . = / fix Eacx , [ f ( x ) ] dx > ) qcx dist T qcx ) some

  12. Central problem this in course Quantity Epcxiy of e- interest )[ fk , y ) ] Thitngs ( www. Things do we know don't we . driving Self Cars Diagnosis Past trajectory Symptoms y Examples Condition Future trajectory × f Treatment Will pedestrian Outcome ? cross

  13. Biased Example Coins : Beta Bias ( X , B) [ 0,1 ] a E ~ × 's ' unbiased coin is ×=° Bernoulli Yn ( × ) ~ always tails x=o N heads always × I n = = i . . , , . g tails { yn= Banes Rule heads Posterior ) p ( X ,4µ=yn 14 y = , , . . . , Likelihood Prior X ) p ( X ) 4 YN ( 1 y = p yn = = , , . . . , , yn , ) Marginal PCY Uµ= y = , . . Likelihood , . . ,

  14. ' ¥-1,1 piyn '× ¥ Yates Beta " ' " ' Pinion ' .× 0 I p l I a - i - Betak xs ( ;qp7= × . i - BC 0,137 - BIQB ) bur P( a) 171137 = co 11 × ) - p - Parameters 176+13 ) Likelihood ,bH µ yi ... , ✓ II. ply :n1× ) plynlx ) are = , , i. XYT " { ×Yn( ) x yn=i = = ( l x ) yn=o -

  15. × depend on Conjngacy does g ) Plx I ply , :µ,× ) a ply yi :µ,×7 :µ = , - ) Plyiin \ depend does not oh × ( yi ) lx ply ) P :µ,× pk ) = , :m µ B- ( l ) yn yn at 1 n - 1- \ ( 1 ( X × × ) × l = - - nil 1310,131 III. but , , .nl#..tynHB 1 -1 to . , = - n BGIB ) ( (^ Number Number of of Sufficient tails heads in in - trials trials N N statistics

  16. Conjngacy ) Plx I ply , :µ,×7 yi a ply :µ,×7 :µ = , - ) plyiin ( Yi ,× ) lx P ply ) pk = :µ ) , :m xo N . xsp "MxYn( , " " -9 "a 1 .× , = B( a ,M n= , ×l£IYnlta + ' =p .nl?Ea.ynDtB.ln=g= N £ ' :[ . 1 ynto .tk#lBe+acx;a.B , , = - B( a ,p7 =D = 1 - N 15=1 i. xp " Ya " , ,3,×£' ,÷ ) ( , BA ,B )

  17. Doesn't depend X on Conjugate f Depends × on d BC I. B ) Betak;I F) × ) ply = :n , , , Bla B) , ) ) PCX I plyi yi = :u :µ Posterior / F ) ) Beta Q ; x pcxiyi :n = , H E [ ynto . = Marginal Likelihood nu = & , .li B(I,pif B ) yn ) + ply 13 - :u = , B( a ,B )

  18. Predictive Distribution Joint probability of trial next bias and coin - | :X , ) ( , ) 1 dx Yi Yi plymti × p 1 yµ+ = :X , , / ) 1×1 pklyi dx ( yµ+ = p :N , ) :* ) [ plyntilxl Epcxiy = , Weighted Example Coin ) ( Exercise

  19. Hard ? Why Bayesian Inference is Gaussians Mixture Example of : K ( he Normal ) Center µw 0,1 ~ 1 , ... , Gamma 11,1 ) 6h Width ~ 1 He Discrete ( 11k . ,N Cluster ) Z ~ 1 = n in . . ... , , , Assignment Normal ( Mh ,6u ) Zn=h 1 yn .nl/Ui:k,6i:k ~ Marginal Likelihood µ ) =) die K K K , :µP( Yi , , ,<d7 , :,<d6 ) PC ,7i yi :N :n

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend