evaluation of turbo h arq schemes for cooperative mimo
play

Evaluation of Turbo H-ARQ Schemes for Cooperative MIMO Transmission - PowerPoint PPT Presentation

Evaluation of Turbo H-ARQ Schemes for Cooperative MIMO Transmission Adrin Agustn, Josep Vidal , Eduard Calvo, Olga Muoz Universitat Politcnica de Catalunya (UPC) Barcelona, SPAIN IWWAN 04 Oulu Partners in in Romantik Romantik


  1. Evaluation of Turbo H-ARQ Schemes for Cooperative MIMO Transmission Adrián Agustín, Josep Vidal , Eduard Calvo, Olga Muñoz Universitat Politècnica de Catalunya (UPC) Barcelona, SPAIN IWWAN – 04 Oulu

  2. Partners in in Romantik Romantik Partners UPC – Universitat Politècnica de Catalunya Prof. Josep Vidal Department of Signal Theory and Communications UoB – University of Bristol Prof. Andrew Nix Centre for Communications Research DUN – Dune, Ingegneria dei Sistemi Otello Gasparini INFO – Università di Roma “La Sapienza” Prof. Sergio Barbarossa INFOCOM Department ICOM – Intracom Dr. George Aggelou Development Projects Department FLE – Fujitsu Laboratories of Europe Dr. Sunil Vadgama Advanced Radio Access Systems TELENOR – Telenor Communication II AS Dr. Geoffrey Canright Telenor R&D 2/24 IWWAN – 04 Oulu

  3. Outline Outline • Cooperative transmission schemes • Cooperative transmission schemes • Distributed space-time codes • Distributed space-time codes • Retransmission protocols • Retransmission protocols • Results • Results • Conclusions and trend lines • Conclusions and trend lines 3/24 IWWAN – 04 Oulu

  4. Cooperation for for an an ad ad- -hoc hoc multihop multihop scenario scenario Cooperation [Barbarossa03, Sendonaris03] MAC - TDD/TDMA operation Source Destination node node Twice the physical resources used - Resource allocation in the relay slot crucial is for high network capacity ↔ ↔ ↔ ↔ TDD/TDMA frame 4/24 IWWAN – 04 Oulu

  5. Cooperation for for an an ad ad- -hoc hoc multihop multihop scenario scenario Cooperation [Laneman03] MAC - TDD/TDMA operation Destination Source node node Equivalent to a MIMO system ↔ ↔ ↔ ↔ TDD/TDMA frame 5/24 IWWAN – 04 Oulu

  6. Capacity gains gains of of the the cooperative cooperative schemes schemes Capacity Creates a “virtual” multiple input-multiple output (MIMO) transmission scheme ⇒ Capacity gains! Operating modes for cooperative schemes: - Amplify and forward (AF) Capacity is close to a The relay amplifies and retransmits M × 2 N MIMO system the received signal - Decode and forward (DF) Capacity is close to a ( M + R ) × 2 N MIMO The relay decodes and transmits the decoded symbols system 6/24 IWWAN – 04 Oulu

  7. Cooperation in a in a cellular cellular system system: DL : DL Cooperation MAC - TDD/TDMA operation LB LBR HBR HBR - One of the time slots shared for coverage coverage coverage coverage cooperation PHY - Multiple antennas at BS and (possibly) at the RS RRM - Power allocation for the relay slot - Scheduling based on the Relay terminal cooperative channel state User equipment ↔ ↓ ↓ ↓ ↓ ↑ ↑ TDD/TDMA frame 7/24 IWWAN – 04 Oulu

  8. Particularities of of cooperative cooperative schemes schemes Particularities Difficulties • Erroneous reception at the relay channel • Number of physical resources: reuse of relay channel 8/24 IWWAN – 04 Oulu

  9. Cellular reuse reuse of of the the relay relay channel channel Cellular [Agustin04] • Game theorical approach: interaction of decision- makers with conflicting Scenario M=2,N=1,R=1 Max users=9 case=10 DF-UC - Users in Cooperation 900 1 8 objectives (power selection). 8 Base Station Mobile Station 0.9 800 Relay Station 4 0.8 • Decentralized algorithm 700 4 0.7 600 0.6 • Components of the non- 5 meters 500 0.5 cooperative game 5 1 0.4 2 – A set of players: UE = 400 6 1 6 {1,2,…K} 0.3 2 300 3 – Actions for each player 0.2 3 9 200 (relay power) 9 7 0.1 7 – Utility function to map 100 0 0 0 100 1 200 2 300 3 400 4 500 5 600 6 700 7 800 8 900 9 1000 10 actions into the real meters Users numbers (maximise the Single link throughput figures have bits/joule) to be scales to a factor K/(K+1) 9/24 IWWAN – 04 Oulu

  10. Particularities of of cooperative cooperative schemes schemes Particularities Difficulties • Erroneous reception at the relay channel • Number of physical resources: reuse of relay channel Design options: • Space-time coding: distributed codewords • A&F or D&F operation • Combined FEC/Retransmission scheme • Role of relay node in retransmissions: - Incremental - Selective • Receivers: linear vs. optimum 10/24 IWWAN – 04 Oulu

  11. Cooperative transmission transmission (I) (I) Cooperative • Turbo coded transmission schemes – Non Cooperative BS • Alamouti – Cooperative A&F ( R=1 ) M=2 • Alamouti, VBLAST or QOD – Cooperative D&F ( R=2 ) • Alamouti, VBLAST or QOD RS • Retransmission combining schemes – HARQ I – HARQ II MS N=1 ~ 2x2 MIMO system 11/24 IWWAN – 04 Oulu

  12. Distributed Space Space Time Time Coding Coding Distributed D&F implementation Space-time matrix associated to symbol q Data associated to M tx atennas BS Antennas   a a a a L L ( ) ( ) 11 1 M + + 1 M 1 1 M R   =  A M O M  Time q   a a a a L L   ( ) ( ) + + T 1 TM T M 1 T M R Data associated to R tx atennas RS Data associated to one transmitting antenna 12/24 IWWAN – 04 Oulu

  13. Cooperative transmission transmission (II) (II) Cooperative • Turbo coded transmission schemes – Non cooperative BS • Alamouti M=2 – Cooperative A&F (R=1) – Cooperative A&F (R=1) Cooperative A&F (R=1) – • Alamouti , VBLAST or QOD • Alamouti Alamouti, VBLAST or QOD , VBLAST or QOD • – C ooperative D&F (R=2) – C C ooperative ooperative D&F (R=2) D&F (R=2) – • Alamouti , VBLAST or QOD • Alamouti Alamouti, VBLAST or QOD , VBLAST or QOD • RS • If the packet is wrongly decoded, incremental information is transmitted and combined at the MS receiver N=1 2x1 MIMO system 13/24 IWWAN – 04 Oulu

  14. Cooperative transmission transmission (II) (II) Cooperative • Turbo coded transmission schemes – Non cooperative – Non cooperative Non cooperative – BS • Alamouti • Alamouti Alamouti • M=2 – Cooperative A&F ( R=1 ) • Alamouti, VBLAST or QOD – Cooperative D&F ( R=2 ) – Cooperative D&F Cooperative D&F ( ( R=2 R=2 ) ) – • Alamouti , VBLAST or QOD • Alamouti Alamouti, VBLAST or QOD , VBLAST or QOD • RS Amplify and Forward MS N=1 ~ 2x2 MIMO system 14/24 IWWAN – 04 Oulu

  15. Cooperative transmission transmission (II) (II) Cooperative • Turbo coded transmission schemes – Non cooperative – Non cooperative Non cooperative – BS • Alamouti • Alamouti Alamouti • M=2 – Cooperative A&F ( R=1 ) – Cooperative A&F Cooperative A&F ( ( R=1 R=1 ) ) – • Alamouti , VBLAST or QOD • Alamouti Alamouti, VBLAST or QOD , VBLAST or QOD • Parity 1 – Cooperative D&F ( R=2 ) • Alamouti, VBLAST or QOD Parity 2 RS Decode and • RS and BS may use the same ST block code (for Forward MS Alamouti or VBLAST), or different (for QOD) N=1 • RS transmits uncorrelated symbols: different transmitted parity from BS and RS ~ 2x2 MIMO system 15/24 IWWAN – 04 Oulu

  16. Turbo Codes for FEC/HARQ II Turbo Codes for FEC/HARQ II • Turbo Encoder implementation Input systematic  1 1 1 1 1 1  systematic   packet =  P 1 0 1 0 1 0  BS _1/ 2 parity   0 1 0 1 0 1 RSC   Puncturing Π parity output packet RSC rate ~ 1/3 Improving diversity � Change puncturing • From the relay node • Between different retransmissions • Concatenation with ST codes Input Turbo - Space-Time Puncturing Encoder encoder packet 16/24 IWWAN – 04 Oulu

  17. HARQ II Retransmission Strategy HARQ II Retransmission Strategy • HARQ-II transmission in a cooperative system   1 1 1 1 1 1   ( ) BS BS 1 =  P 1 0 1 0 1 0  BS _1/ 2   M=2 M=2 0 1 0 1 0 1     1 0 1 0 1 0 A new transmission is required ?   ( ) 2 =  P 1 1 1 1 1 1  BS _1/ 2   1 0 1 0 1 0   Change puncturing at BS and RS RS RS • If RS decodes correctly, R=2 R=2 retransmits with puncturing matrix: MS MS N=1 N=1  1 0 1 1 0 1    =  P 1 1 0 1 0 1  RS _1/ 2   • Use different puncturing matrices 1 0 1 1 1 0   for every retransmitted packet  0 1 0 1 0 1    ( ) 2 =  P 1 0 1 0 1 0  RS _1/ 2   1 1 1 1 1 1   17/24 IWWAN – 04 Oulu

  18. Results Results • Scenario – List Sphere Decoder (near optimum receiver) – Symmetric configuration . All links have equal average SNR level – Flat Rayleigh fading channel, uncorrelated among links – 4 QAM constellation – Source: 2 antennas Relay: 1-2 antennas Destination : 1 antenna – HARQ-II retransmissions of equal or different size • Evaluation of throughput in the downlink – Non cooperative 2 x 1 transmission – Cooperative D&F – diversity gain – Cooperative D&F – multiplexing gain – Cooperative A&F 18/24 IWWAN – 04 Oulu

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend