estimation in the fixed effects ordered logit model
play

Estimation in the Fixed Effects Ordered Logit Model Chris Muris - PowerPoint PPT Presentation

Estimation in the Fixed Effects Ordered Logit Model Chris Muris (SFU) Outline Introduction Model and main result Cut points Estimation Simulations and illustration Conclusion Setting 1. Fixed- T panel. A random sample { ( y it , X it ) , i


  1. Estimation in the Fixed Effects Ordered Logit Model Chris Muris (SFU)

  2. Outline Introduction Model and main result Cut points Estimation Simulations and illustration Conclusion

  3. Setting 1. Fixed- T panel. A random sample { ( y it , X it ) , i = 1 , · · · , N , t = 1 , · · · , T } , with N → ∞ 2. Ordered logit . y it is an ordered response in { 1 , 2 , · · · , J } , y ∗ = α i + X it β + u it , it  y ∗ 1 if it < γ 1 ,    if γ 1 ≤ y ∗ 2 it < γ 2 ,   y it = . . . . . .     if γ J − 1 ≤ y ∗ J it ,  for cut points γ j . Errors are logistic. 3. Fixed effects. Joint distribution of α i and X i is unrestricted.

  4. Contribution This paper: • Estimation of differences of the cut points • More efficient estimation of the regression coefficient Why does this matter? • Cut points: bounds on partial effects • Model is heavily used (BSW, 2015: > 150 cites)

  5. Application (1): Allen and Arnutt (WP, 2013) Effect of “Teach First” program on educational outcomes. • y it : letter grade student i for subject-year t • D it ∈ { 0 , 1 } : school enrolled in “Teach First”? • Latent variable model: y ∗ it = α i + β 1 D it + X it β 2 + u it , where • α i is unobserved student ability • X it are controls

  6. Application (1): Allen and Arnutt (WP, 2013) All three model ingredients are present 1. Fixed- T : number of subjects per student is much smaller than the number of students 2. Ordered: letter grade is an ordered outcome 3. Fixed effects: schools with results in the bottom 30% are eligible

  7. Application (2): Frijters et al. (AER, 2004): Effect of income on life satisfaction • y it : life satisfaction on scale { 0 , · · · , 10 } • “completely dissatisfied” to “completely satisfied”. • X it : real household income • Latent variable model: y ∗ it = α i + β 1 X it + Z it β 2 + u it • α i : unobserved student ability • X it may correlated with α i • Z it : other controls.

  8. More applications • Health • Khanam et al. (JHE, 2014): income and child health • Carman (AER, 2013): intergenerational transfers and health • Frijters et al. (JHE, 2005): income on health • Labor • Hamermesh (JHR, 2001): earnings shocks and job satisfaction • Das and van Soest (JEBO, 1999): expectations about future income

  9. More applications (2) • Happiness • Frijters et al. (AER, 2004): income and life satisfaction • Blanchflower and Oswald (JPE, 2004): trends in US life satisfaction • Credit / debt ratings • Amato, Furfine (JBF 2003): credit ratings are not procyclical • Afonso et al. (IJOFE, 2013): determinants of sovereign debt ratings • Education • Allen and Alnutt (2013): effect of “Teach First” program on student achievement

  10. Literature • Chamberlain (RES, 1980) : binary choice and unordered choice • Das and van Soest (JEBO, 1999): all cutoffs • Ferrer-i-Carbonell and Frijters (EJ, 2004): individual-specific cutoffs • Baetschmann et al. (JRSS-A, 2015): small-sample improvements None of these papers estimate the cut point differences.

  11. Outline Introduction Model and main result Cut points Estimation Simulations and illustration Conclusion

  12. Model • Random sample of size n → ∞ , T fixed: { ( y i 1 , · · · , y iT , X i 1 , · · · , X iT ) , i = 1 , · · · , n } • y it is an ordered outcome in { 1 , · · · , J } • X it = ( X it , 1 , · · · , X it , K ) are covariates • Unobserved heterogeneity in the latent variable: y ∗ it = α i + X it β + u it • Serially independent, exogenous logistic errors u i 1 , · · · , u iT | ( X i 1 , · · · , X iT ) , α i ∼ iid LOG (0 , 1) • Link between latent and observed by cut points  y ∗ 1 if it < γ 1    if γ 1 ≤ y ∗ 2 it < γ 2   y it = . . . . . .     if γ J − 1 ≤ y ∗ J it . 

  13. Incidental parameters For each category j , P ( y it = j | X it , α i ) = Λ ( γ j − α i − X it β ) − Λ ( γ j − 1 − α i − X it β ) , where Λ = exp ( x ) / (1 + exp ( x )). Likelihood is n T J [Λ ( γ j − α i − X it β ) − Λ ( γ j − 1 − α i − X it β )] 1 { y it = j } . � � � t =1 i =1 j =1 • Fixed T : maximum likelihood estimator (MLE) is inconsistent

  14. Incidental parameters (logit) ˆ β ML : maximum likelihood estimator for T = J = 2 • Inconsistent (Abrevaya, 1997) p • ˆ β ML → 2 β as n → ∞ • Solution (Chamberlain, 1980) • y i 1 + y i 2 is a sufficient statistic for α i • conditional MLE (CMLE) with 1 P ( y i = (1 , 0) | y i 1 + y i 2 = 1 , X i , α i ) = 1 + exp (( X i 2 − X i 1 ) β ) is consistent • Drawback: CMLE uses only switchers

  15. Incidental parameters (Ordered logit) • Solution for incidental parameters problem is model-specific • No sufficient statistic (yet?) for ordered logit • No exponential form: P ( y it = j | X it , α i ) = Λ ( γ j − α i − X it β ) − Λ ( γ j − 1 − α i − X it β )

  16. Incidental parameters (Takeaway) • Unobserved heterogeneity can cause inconsistency • Solution exists for the case of binary logit • Solution uses only switchers • Does not extend to ordered logit model

  17. Ordered choice • Consider ordered choice with y it ∈ { 1 , · · · , J } • Dichotomization : • Pick some j ∈ { 1 , · · · , J − 1 } and define the binary variable � if y it ≤ j , 1 d it , j = 0 otherwise. • Apply Chamberlain’s CMLE to y it , j • Consistent but inefficient : • Information is lost by discarding more precise measurement y it • Winkelmann and Winkelmann (1998): • { 0 , · · · , 10 } collapsed to { 0 , 1 } by cutting at 7 • Out of 10000 observations, only 2523 are switchers

  18. Non-switcher: not informative

  19. Switcher: informative

  20. Das and van Soest: multiple cutoffs

  21. Time-invariant transformations do not catch flat patterns

  22. Time-varying transformations catch flat patterns

  23. There are ( J − 1) T ≥ ( J − 1) time-varying transformations

  24. Main result (notation) • C utoff categories π t ≤ J − 1 • π = ( π 1 , · · · , π T ) is a transformation • d it ,π = 1 { y it ≤ π t } is the π − transformed dependent variable • time series for unit i : d i ,π ∈ { 0 , 1 } T • ¯ d i ,π = � t d it ,π : number of times below cutoff d is the set of all binary T − vectors f with sum ¯ • F ¯ d

  25. Main result Theorem If the random vector ( y i , X i ) follows the fixed effects ordered logit model, then for any transformation π , the conditional probability distribution of the π -transformed dependent variable d i ,π is given by d i ,π = d | ¯ d i ,π = ¯ � � p i ,π ( d | β, γ ) ≡ P d , X i , α i (1) 1 �� (2) = � �� � d exp t ( f t − d t ) γ π ( t ) − X it β f ∈ F ¯ for any d ∈ { 0 , 1 } T .

  26. Main result (remarks) 1. Conditional probability does not depend on α i 2. Sufficient statistic exists for ( J − 1) T transformations of y i 3. Existing approaches use at most ( J − 1) of those transformations

  27. Main result ( T = 2) Evaluate the conditional probability for d = (1 , 0) • For any time-invariant transformation: 1 1 + exp {− ( X i 2 − X i 1 ) β } • For time-varying transformation π = ( j , k ), j � = k 1 1 + exp { ( γ k − γ j ) − ( X i 2 − X i 1 ) β } Identification of γ k − γ j . Intuition: subpopulation with X i 2 = X i 1

  28. Outline Introduction Model and main result Cut points Estimation Simulations and illustration Conclusion

  29. Cut points: binary • Panel data binary choice ( J = 2) : • no interpretation of the magnitude of β • evaluation of partial effects requires value/distribution α i • Existing estimators for ordered choice inherit this problem by eliminating thresholds • Marginal effect of a ceteris paribus change in regressor m with coefficient β m : ∂ P ( y it ≤ j | X it , α i ) = β m Λ ( α i + X it β − γ j ) [1 − Λ ( α i + X it β − γ j )] ∂ X it , m

  30. Change in y it for unit change in X it , m ?

  31. If y ∗ it = α i + X it β + u it < − β m , then y it is unchanged.

  32. No marginal effects without info on α i or α i | X it .

  33. Bounds (notation) • Consider a ceteris paribus change in X it of ∆ x • The counterfactual latent dependent variable is y ∗ it = y ∗ ˜ it + (∆ x ) β ; • ˜ y it : the counterfactual ordered outcome.

  34. Bounds Conditional probability for the observed counterfactual outcome:  1 if (∆ x ) β > γ j − γ j − 1 ,    0 if (∆ x ) β < 0 , P ( ˜ y it > j | y it = j , X it ) = F v ( γ j − X it β ) − F v ( γ j − ( X it +∆ x ) β )  else   F v ( γ j − X it β ) − F v ( γ j − 1 − X it β ) Paper presents a more general result along the same lines. Note: intermediate category.

  35. Bounds (2) Using the first component: • Minimum required change in X itm to move everybody with y it = j up: m ≡ γ j − γ j − 1 δ j β m • Let ∆ x m be the ceteris paribus change in X it , m , then ∆ x m > δ j m ⇒ P ( ˜ y it > j | y it = j , X it ) = 1

  36. Outline Introduction Model and main result Cut points Estimation Simulations and illustration Conclusion

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend