error correcting sparse interpolation in the chebyshev
play

Error-Correcting Sparse Interpolation in the Chebyshev Basis Andrew - PowerPoint PPT Presentation

Error-Correcting Sparse Interpolation in the Chebyshev Basis Andrew Arnold* Erich Kaltofen University of Waterloo North Carolina State University a4arnold@uwaterloo.ca kaltofen@math.ncsu.edu AndrewArnold.ca kaltofen.us ISSAC 15, Bath,


  1. Error-Correcting Sparse Interpolation in the Chebyshev Basis Andrew Arnold* Erich Kaltofen University of Waterloo North Carolina State University a4arnold@uwaterloo.ca kaltofen@math.ncsu.edu AndrewArnold.ca kaltofen.us ISSAC ’15, Bath, UK 2015-07-08

  2. Introduction Let T n ( x ) be the n th Chebyshev polynomial of the first kind: T 0 = 1 , T 1 = x , T n ( x ) = 2 xT n − 1 ( x ) − T n − 2 ( x ) , for n ≥ 2 T 4 = 8 x 4 − 8 x 2 + 1 , E.g. T 2 = 2 x 2 − 1 , T 3 = 4 x 3 − 3 x , . . . Useful Properties: ▶ T n ( T m ( x )) = T mn ( x ) ▶ T m ( x ) T n ( x ) = 1 2 ( T m + n ( x ) + T | m − n | ( x )) 2 ( x n + x − n ) ▶ T n ( x + x − 1 ) = 1 2 ▶ Over R , for | ξ | > 1, T n ( ξ ) ̸ = 0 We are interested in the interpolation and error-correcting properties of sparse Chebyshev polynomials (i.e. polynomials that are sparse in the Chebyshev basis). 2

  3. Contributions Covered in this talk An error-correcting black-box interpolation algorithm for sparse Chebyshev polynomials. Not covered in this talk An alternative sparse Chebyshev interpolation algorithm for f ∈ K[ x ], char (K) ̸ = 2, that reduces the problem to sparse interpolation in the power basis, i.e. 1 , x , x 2 , x 3 , . . . . ▶ Allows for early termination (Kaltofen, Lee; 2003), such that we can (probabilistically) interpolate f with t terms, with cost sensitive to t even when bounds for t are not supplied as input. 3

  4. The Problem ▶ Suppose f ∈ R [ x ] is of the form t ∑ f = c i T δ i ( x ) � �� � i =1 c i ̸ =0 and with δ 1 >δ 2 >...>δ t ▶ We are given a black box ■ for f . For j = 0 , 1 , . . . , L − 1, we query ■ with x j and get back a j , where either a j = f ( x j ) or a j is an erroneous evaluation. f ? x j a j = ■ ( x j ) = f ( x j ) ▶ Problem: reconstruct f and identify errors, given ■ and bounds B ≥ t , D ≥ deg( f ) , E ≥ # { errors } while minimizing, L the number of queries to ■ . 4

  5. Interpolating with Errors - Example E.g. deg( f ) ≤ D = 19, ≤ B = 3 terms, ≤ E = 5 errors 5

  6. Interpolating with Errors - Example E.g. deg( f ) ≤ D = 19, ≤ B = 3 terms, ≤ E = 5 errors ▶ Minimizing ℓ 2 -error gives a dense approximation for the model, 0 . 786462 T 19 − 0 . 253808 T 19 − 0 . 270838 T 18 + 0 . 101009 T 16 + 0 . 206344 T 15 − 0 . 135857 T 15 − 0 . 076361 T 14 + 0 . 051550 T 12 − 0 . 699793 T 12 + 0 . 003612 T 10 − 0 . 473865 T 10 + 0 . 352537 T 8 − 0 . 307681 T 8 − 1 . 054240 T 7 + 0 . 753950 T 5 − 0 . 112232 T 5 − 1 . 388821 T 4 + 1 . 025795 T 2 + 1 . 364547 T 1 + 3 . 325460 T 0 5

  7. Interpolating with Errors - Example E.g. deg( f ) ≤ D = 19, ≤ B = 3 terms, ≤ E = 5 errors ▶ Minimizing ℓ 2 -error gives a dense approximation for the model, 0 . 786462 T 19 − 0 . 253808 T 19 − 0 . 270838 T 18 + 0 . 101009 T 16 + 0 . 206344 T 15 − 0 . 135857 T 15 − 0 . 076361 T 14 + 0 . 051550 T 12 − 0 . 699793 T 12 + 0 . 003612 T 10 − 0 . 473865 T 10 + 0 . 352537 T 8 − 0 . 307681 T 8 − 1 . 054240 T 7 + 0 . 753950 T 5 − 0 . 112232 T 5 − 1 . 388821 T 4 + 1 . 025795 T 2 + 1 . 364547 T 1 + 3 . 325460 T 0 ▶ But if we identify 3 errors... 5

  8. Interpolating with Errors - Example E.g. deg( f ) ≤ D = 19, ≤ B = 3 terms, ≤ E = 5 errors ▶ Minimizing ℓ 2 -error gives a dense approximation for the model, 0 . 786462 T 19 − 0 . 253808 T 19 − 0 . 270838 T 18 + 0 . 101009 T 16 + 0 . 206344 T 15 − 0 . 135857 T 15 − 0 . 076361 T 14 + 0 . 051550 T 12 − 0 . 699793 T 12 + 0 . 003612 T 10 − 0 . 473865 T 10 + 0 . 352537 T 8 − 0 . 307681 T 8 − 1 . 054240 T 7 + 0 . 753950 T 5 − 0 . 112232 T 5 − 1 . 388821 T 4 + 1 . 025795 T 2 + 1 . 364547 T 1 + 3 . 325460 T 0 ▶ But if we identify 3 errors...we get a sparse fit T 15 − 2 T 11 + T 2 5

  9. Interpolating with Errors - Example E.g. deg( f ) ≤ D = 19, ≤ B = 3 terms, ≤ E = 5 errors ▶ Minimizing ℓ 2 -error gives a dense approximation for the model, 0 . 786462 T 19 − 0 . 253808 T 19 − 0 . 270838 T 18 + 0 . 101009 T 16 + 0 . 206344 T 15 − 0 . 135857 T 15 − 0 . 076361 T 14 + 0 . 051550 T 12 − 0 . 699793 T 12 + 0 . 003612 T 10 − 0 . 473865 T 10 + 0 . 352537 T 8 − 0 . 307681 T 8 − 1 . 054240 T 7 + 0 . 753950 T 5 − 0 . 112232 T 5 − 1 . 388821 T 4 + 1 . 025795 T 2 + 1 . 364547 T 1 + 3 . 325460 T 0 ▶ But if we identify 3 errors...we get a sparse fit T 15 − 2 T 11 + T 2 5

  10. Related Work - Sparse Interpolation in Power Basis Theorem (Prony; 1795) f ( x ) = ∑ t i =1 c i x e i ∈ K[ x ] , Let K be a field, ω ∈ K , and t − 1 t ∏ ∑ ( y − ω e i ) = y t + ϕ i y i . Φ( y ) = i =1 i =0 Then for a j = f ( ω j ) ,       a 0 a 1 a t − 1 φ 0 a t · · · a 1 a 2 a t φ 1 a t +1   · · ·        =  . . . .  .   .  ...   . . . . .   . . . . .   a t − 1 a t a 2 t − 2 φ t − 1 a 2 t − 1 · · · � �� � = H t ▶ i.e., exponents of f are encoded in a solution to a Hankel system. ▶ Corollary: H t ′ is singular for t ′ > t . 6

  11. Prony’s Method for Interpolation in the Power Basis 1 Inputs: Error-free ■ for t -sparse f ∈ K[ x ], bounds B ≥ t , D ≥ deg( f ) 1. Choose ω ∈ K of order > D . Let x j = ω j . Evaluate a j = ■ ( x j ) for j = 0 , 1 , . . . , 2 B − 1. 1 See also Ben-Or–Tiwari; 1988 7

  12. Prony’s Method for Interpolation in the Power Basis 1 Inputs: Error-free ■ for t -sparse f ∈ K[ x ], bounds B ≥ t , D ≥ deg( f ) 1. Choose ω ∈ K of order > D . Let x j = ω j . Evaluate a j = ■ ( x j ) for j = 0 , 1 , . . . , 2 B − 1. 2. Determine t ≤ B as the largest value such that H t is nonsingular. 1 See also Ben-Or–Tiwari; 1988 7

  13. Prony’s Method for Interpolation in the Power Basis 1 Inputs: Error-free ■ for t -sparse f ∈ K[ x ], bounds B ≥ t , D ≥ deg( f ) 1. Choose ω ∈ K of order > D . Let x j = ω j . Evaluate a j = ■ ( x j ) for j = 0 , 1 , . . . , 2 B − 1. 2. Determine t ≤ B as the largest value such that H t is nonsingular. 3. Solve size- t Hankel system to get Φ( y ) with roots ω e i , 1 ≤ i ≤ t . 1 See also Ben-Or–Tiwari; 1988 7

  14. Prony’s Method for Interpolation in the Power Basis 1 Inputs: Error-free ■ for t -sparse f ∈ K[ x ], bounds B ≥ t , D ≥ deg( f ) 1. Choose ω ∈ K of order > D . Let x j = ω j . Evaluate a j = ■ ( x j ) for j = 0 , 1 , . . . , 2 B − 1. 2. Determine t ≤ B as the largest value such that H t is nonsingular. 3. Solve size- t Hankel system to get Φ( y ) with roots ω e i , 1 ≤ i ≤ t . 4. Factor Φ to get ω e i . Determine e i from ω e i for 1 ≤ i ≤ t . 1 See also Ben-Or–Tiwari; 1988 7

  15. Prony’s Method for Interpolation in the Power Basis 1 Inputs: Error-free ■ for t -sparse f ∈ K[ x ], bounds B ≥ t , D ≥ deg( f ) 1. Choose ω ∈ K of order > D . Let x j = ω j . Evaluate a j = ■ ( x j ) for j = 0 , 1 , . . . , 2 B − 1. 2. Determine t ≤ B as the largest value such that H t is nonsingular. 3. Solve size- t Hankel system to get Φ( y ) with roots ω e i , 1 ≤ i ≤ t . 4. Factor Φ to get ω e i . Determine e i from ω e i for 1 ≤ i ≤ t . 5. Obtain the coefficients c i as the solution to the Vandermonde system       x e 1 x e 2 x e t . . . c 1 a 0 0 0 0 x e 1 x e 2 x e t . . . c 2 a 1       1 1 1        =  , . . . . . ...       . . . . . . . . . .     x e 1 x e 2 x e t . . . c t a t − 1 t − 1 t − 1 t − 1 and output f = ∑ t i =1 c i x e i . 1 See also Ben-Or–Tiwari; 1988 7

  16. Related Work - Sparse Chebyshev Interpolation Theorem (Lakshman, Saunders; 1995) Let f ( x ) = ∑ t i =1 c i T δ i ( x ) ∈ R [ x ] , ξ > 1 , and t − 1 t ∏ ∑ ( y − T δ i ( ξ )) = y t + ϕ i y i . Φ( y ) = i =1 i =0 Then for a j = f ( T j ( ξ )) , ([ a i + j ) [ ϕ i ] t − 1 [ a | i − j | ] t − 1 ] t [ a t + i + a t − i ] t − 1 + i =0 = i =0 . i , j =0 i , j =0 � �� � � �� � H t T t ▶ i.e., indices δ i are encoded in solution to a Hankel+Toeplitz system. ▶ One can show H t ′ + T t ′ is nonsingular for t ′ > t. 8

  17. Lakshman–Saunders Sparse Chebyshev Interpolation Inputs: Error-free ■ for t -sparse f ∈ R [ x ]; bounds B ≥ t , D ≥ deg( f ) 1. Choose ξ > 1. Let x j = T j ( ξ ). Evaluate a j = ■ ( x j ) for j = 0 , . . . , 2 B − 1. 9

  18. Lakshman–Saunders Sparse Chebyshev Interpolation Inputs: Error-free ■ for t -sparse f ∈ R [ x ]; bounds B ≥ t , D ≥ deg( f ) 1. Choose ξ > 1. Let x j = T j ( ξ ). Evaluate a j = ■ ( x j ) for j = 0 , . . . , 2 B − 1. 2. Determine t ≤ B as the largest value such that H t + T t is nonsingular. 9

  19. Lakshman–Saunders Sparse Chebyshev Interpolation Inputs: Error-free ■ for t -sparse f ∈ R [ x ]; bounds B ≥ t , D ≥ deg( f ) 1. Choose ξ > 1. Let x j = T j ( ξ ). Evaluate a j = ■ ( x j ) for j = 0 , . . . , 2 B − 1. 2. Determine t ≤ B as the largest value such that H t + T t is nonsingular. 3. Solve Hankel+Toeplitz system to obtain Φ( y ) with roots T δ j ( ξ ). 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend