envelopes and string art
play

Envelopes and String Art Gregory Quenell 1 Activity: 1 Draw - PDF document

Envelopes and String Art Gregory Quenell 1 Activity: 1 Draw line segments connecting 0 . 8 (0 , x ) with (1 x, 0) 0 . 6 for x = 0 . 1 , 0 . 2 , . . . , 0 . 9. 0 . 4 Benefits: 0 . 2 Gives you something to do during calculus class 0 .


  1. Envelopes and String Art Gregory Quenell 1

  2. Activity: 1 Draw line segments connecting 0 . 8 (0 , x ) with (1 − x, 0) 0 . 6 for x = 0 . 1 , 0 . 2 , . . . , 0 . 9. 0 . 4 Benefits: 0 . 2 • Gives you something to do during calculus class 0 . 2 0 . 4 0 . 6 0 . 8 1 • Makes a pleasing pattern of inter- secting lines 2

  3. Activity: 1 Draw line segments connecting 0 . 8 (0 , x ) with (1 − x, 0) 0 . 6 for x = 0 . 1 , 0 . 2 , . . . , 0 . 9. 0 . 4 Benefits: 0 . 2 • Gives you something to do during calculus class 0 . 2 0 . 4 0 . 6 0 . 8 1 • Makes a pleasing pattern of inter- secting lines • Provides an interesting curve to study 3

  4. Question: 1 What curve is this? 0 . 8 0 . 6 Observation: 0 . 4 The curve’s defining property is that 0 . 2 the sum of the x - and y -intercepts of each of its tangent lines is 1. 0 . 2 0 . 4 0 . 6 0 . 8 1 That gives us the condition y − xdy y dx + x − dy/dx = 1 4

  5. Different approach: For each α ∈ [0 , 1], let ℓ α be the line segment connecting (0 , β ) (0 , α ) with (1 − α, 0) . (0 , α ) If α and β are close together, then the ℓ α � ✠ intersection point of ℓ α and ℓ β is close to a point on the curve. ✲ ℓ β Exercise: (1 − β, 0) (1 − α, 0) For α � = β , the segments ℓ α and ℓ β in- tersect at the point ( αβ, (1 − α )(1 − β )) . 5

  6. Result: As β → α , the point ( αβ, (1 − α )(1 − β )) approaches a point on the curve. Thus, each point on the curve has the ℓ α ✠ � form ✲ ℓ β β → α ( αβ, (1 − α )(1 − β )) lim for some α . This is an easy limit, and we get the parametrization ( α 2 , (1 − α ) 2 ) , 0 ≤ α ≤ 1 for our envelope curve. 6

  7. Remarks: 1 • The coordinates 0 . 8 x = α 2 and y = (1 − α ) 2 0 . 6 satisfy 0 . 4 √ x + √ y = 1 0 . 2 so our curve is (one branch of) a hypocircle with exponent 1 2 . 0 . 2 0 . 4 0 . 6 0 . 8 1 • Stewart, p. 234, problem 8 says “Show that the sum of the x - and y -intercepts of any tangent line to the curve √ x + √ y = √ c is equal to c .” 7

  8. Exercise: The coordinates 2 x = α 2 and y = (1 − α ) 2 satisfy 1 2( x + y ) = ( x − y ) 2 + 1 Result: Our envelope curve lies on a parabola 1 2 in the uv -plane, where u = x + y and v = x − y . 8

  9. Exercise: The coordinates 2 x = α 2 and y = (1 − α ) 2 satisfy 1 2( x + y ) = ( x − y ) 2 + 1 Result: Our envelope curve lies on a parabola 1 2 in the uv -plane, where u = x + y and v = x − y . 9

  10. Activity: String Art Drive nails at equal intervals along two lines, and connect the nails with decorative string. 10

  11. Activity: String Art The envelope curves are the images, under a linear transformation, of parabolas tangent to the coordinate axes. That is, they are parabolas tangent to the nailing lines. 11

  12. Digression: Game Theory Colin Consider a two-person, non-zero-sum IIA IIB game in which each player has two IA (2 , 0) (3 , 6) strategies. Rose IB (4 , 2) (0 , 0) (IA,IIB) 6 Such a game has four possible payoffs. We list them in a payoff matrix . 4 Payoff to Colin We can show the payoffs to Rose and Colin as points in the payoff plane . (IB,IIA) 2 (IB,IIB) (IA,IIA) 2 4 Payoff to Rose 12

  13. Assumptions: Colin We assume each player adopts a IIA IIB mixed strategy : IA (2 , 0) (3 , 6) Rose • Rose plays IA with probability p IB (4 , 2) (0 , 0) and IB with probability 1 − p . • Colin plays IIA with probability q and IIB with probability 1 − q The expected payoff is then pq (2 , 0) + p (1 − q )(3 , 6) + (1 − p ) q (4 , 2) + (1 − p )(1 − q )(0 , 0) or p [ q (2 , 0) + (1 − q )(3 , 6)] + (1 − p ) [ q (4 , 2) + (1 − q )(0 , 0)] or q [ p (2 , 0) + (1 − p )(4 , 2)] + (1 − q ) [ p (3 , 6) + (1 − p )(0 , 0)] 13

  14. (IA,IIB) Possible payoff points: 6 Each value of q determines one point on the line from (2 , 0) to (3 , 6) and one point on the line from (4 , 2) to 4 Payoff to Colin (0 , 0). Then p is the parameter for a line segment between these points. (IB,IIA) 2 p [ q (2 , 0) + (1 − q )(3 , 6)] +(1 − p ) [ q (4 , 2) + (1 − q )(0 , 0)] (IB,IIB) 4 (IA,IIA) Payoff to Rose 14

  15. (IA,IIB) Possible payoff points: 6 Alternatively, each value of p determines one point on the line from (2 , 0) to (4 , 2) and one point on the 4 Payoff to Colin line from (3 , 6) to (0 , 0). Then q is the parameter for a line segment between these points. (IB,IIA) 2 q [ p (2 , 0) + (1 − p )(4 , 2)] +(1 − q ) [ p (3 , 6) + (1 − p )(0 , 0)] (IB,IIB) 4 (IA,IIA) Payoff to Rose 15

  16. (IA,IIB) Possible payoff points: 6 Either way, the expected payoff is contained in a region bounded by four lines and a parabolic envelope 4 Payoff to Colin curve. If the game is played a large number of times and the average payoff converges (IB,IIA) 2 to a point outside this region, then the players’ randomizing devices are not independent. (IB,IIB) 4 (IA,IIA) Payoff to Rose This could be due to collusion, espionage, or maybe just poor random-number generators. 16

  17. Generalization: Unequal Spacing (0 , Y ( α )) Draw line segments ℓ α connecting (0 , Y ( β )) ( X ( α ) , 0) with (0 , Y ( α )) for arbitrary differentiable functions X and Y . These are “spacing functions”. ( X ( α ) , 0) ( X ( β ) , 0) Exercise: Segments ℓ α and ℓ β intersect at the point � X ( α ) X ( β )( Y ( β ) − Y ( α )) � X ( α ) Y ( β ) − Y ( α ) X ( β ) , Y ( α ) Y ( β )( X ( α ) − X ( β )) X ( α ) Y ( β ) − Y ( α ) X ( β ) 17

  18. Generalization: Unequal Spacing (0 , Y ( α )) To find a point on the envelope curve, we need to compute ( X ( α ) , 0) � X ( α ) X ( β )( Y ( β ) − Y ( α )) � X ( α ) Y ( β ) − Y ( α ) X ( β ) , Y ( α ) Y ( β )( X ( α ) − X ( β )) lim X ( α ) Y ( β ) − Y ( α ) X ( β ) β → α 18

  19. Calculation: “Plugging in” α for β gives � X ( α ) X ( α )( Y ( α ) − Y ( α )) � X ( α ) Y ( α ) − Y ( α ) X ( α ) , Y ( α ) Y ( α )( X ( α ) − X ( α )) X ( α ) Y ( α ) − Y ( α ) X ( α ) � 0 � 0 , 0 = 0 So we try something else . . . The x -coordinate of a point on the envelope is X ( α ) X ( β )( Y ( β ) − Y ( α )) lim X ( α ) Y ( β ) − Y ( α ) X ( β ) β → α 19

  20. X ( α ) X ( β )( Y ( β ) − Y ( α )) Calculation: lim X ( α ) Y ( β ) − Y ( α ) X ( β ) β → α X ( α ) X ( β )( Y ( β ) − Y ( α )) = lim X ( α ) Y ( β ) − X ( α ) Y ( α ) + X ( α ) Y ( α ) − Y ( α ) X ( β ) β → α X ( α ) X ( β )( Y ( β ) − Y ( α )) = lim X ( α )( Y ( β ) − Y ( α )) − Y ( α )( X ( β ) − X ( α )) β → α X ( α ) X ( β )( Y ( β ) − Y ( α ) ) β − α = lim X ( α )( Y ( β ) − Y ( α ) ) − Y ( α )( X ( β ) − X ( α ) β → α ) β − α β − α Y ( β ) − Y ( α ) X ( α ) X ( α ) · lim β → α β − α = Y ( β ) − Y ( α ) X ( β ) − X ( α ) X ( α ) · lim − Y ( α ) · lim β − α β − α β → α β → α ( X ( α )) 2 Y ′ ( α ) = X ( α ) Y ′ ( α ) − Y ( α ) X ′ ( α ) 20

  21. Result: Do the same thing for the y -coordinate Y ( α ) Y ( β )( X ( α ) − X ( β )) lim X ( α ) Y ( β ) − Y ( α ) X ( β ) β → α − ( Y ( α )) 2 X ′ ( α ) = X ( α ) Y ′ ( α ) − Y ( α ) X ′ ( α ) We get the parametrization � � ( X ( α )) 2 Y ′ ( α ) − ( Y ( α )) 2 X ′ ( α ) X ( α ) Y ′ ( α ) − Y ( α ) X ′ ( α ) , X ( α ) Y ′ ( α ) − Y ( α ) X ′ ( α ) for the envelope curve. 21

  22. Example: The picture shows lines generated by � � 3 α − 1 + 1 X ( α ) = 4 2 2 along the x -axis and Y ( α ) = 1 − α 2 along the y -axis. The formula from the previous slide gives the parametrization � − 2 α 3 (4 α 2 − 6 α + 3) 4 α 4 − 15 α 2 + 12 α − 3 , − 3(2 α − 1) 2 ( α 2 − 1) 2 � 4 α 4 − 15 α 2 + 12 α − 3 for the envelope curve. 22

  23. Example: A ladder of length L slides down a  wall.         What is the envelope curve?          Solution: Y ( α )   We want ( X ( α )) 2 + ( Y ( α )) 2 = L 2 ,            so we may as well take     X ( α ) = L sin( α ) and Y ( α ) = L cos( α ) . � �� � X ( α ) 23

  24. Example: A ladder of length L slides down a  wall.         What is the envelope curve?          Solution: Y ( α )   We want ( X ( α )) 2 + ( Y ( α )) 2 = L 2 ,            so we may as well take     X ( α ) = L sin( α ) and Y ( α ) = L cos( α ) . � �� � X ( α ) We get � � ( X ( α )) 2 Y ′ ( α ) − ( Y ( α )) 2 X ′ ( α ) X ( α ) Y ′ ( α ) − Y ( α ) X ′ ( α ) , X ( α ) Y ′ ( α ) − Y ( α ) X ′ ( α ) = ( L sin 3 ( α ) , L cos 3 ( α )) 24

  25. Remarks: The envelope curve, parametrized by          x = L sin 3 ( α ) and y = L cos 3 ( α )          has equation Y ( α )     2 2 2  3 + y 3 = L  x  3         (This is called an astroid .)   � �� � X ( α ) 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend