endpoint behavior of modulation invariant singular
play

Endpoint behavior of modulation invariant singular integrals - PowerPoint PPT Presentation

Endpoint behavior of modulation invariant singular integrals Francesco Di Plinio INdAM-Cofund Marie Curie Fellow at Universit` a degli Studi Roma Tor Vergata Institute of Scientific Computing and Applied Mathematics at Indiana University,


  1. Endpoint behavior of modulation invariant singular integrals Francesco Di Plinio INdAM-Cofund Marie Curie Fellow at Universit` a degli Studi Roma “Tor Vergata” Institute of Scientific Computing and Applied Mathematics at Indiana University, Fellow XXXIII Convegno Nazionale di Analisi Armonica Alba, 17-20 Giugno 2013

  2. Partly joint work with Ciprian Demeter and Christoph Thiele. C. Demeter, F. Di Plinio, Endpoint bounds for the quartile operator , arXiv preprint, to appear on Journal of Fourier Analysis and Applications F. Di Plinio, Lacunary Fourier and Walsh-Fourier series near L 1 , arXiv preprint

  3. The Bilinear Hilbert Transform ˆ f ( x − t ) g ( x + t )d t ˆ g ( η )e ix ( ξ + η ) d ξ d η. ˆ BHT( f, g )( x ) = p . v . t ∼ f ( ξ )ˆ R ξ>η Multiplier singular on a line { ξ = η } ❀ modulation invariant paraproduct : BHT( M ζ f, M ζ g ) = M 2 ζ BHT( f, g ) Same scaling as pointwise product ❀ H¨ older-type bounds: 1 + 1 = 1 BHT : L p 1 ,q 1 ( R ) × L p 2 ,q 2 ( R ) → L p 3 ,q 3 ( R ) = ⇒ p 1 p 2 p 3 Lacey and Thiele showed BHT : L p 1 ( R ) × L p 2 ( R ) → L p 3 ( R ) older tuple with p 1 , p 2 > 1 and p 3 > 2 whenever ( p 1 , p 2 , p 3 ) H¨ 3 . F. Di Plinio (Rome Tor Vergata) Endpoint bounds 3 / 15

  4. The Bilinear Hilbert Transform ˆ f ( x − t ) g ( x + t )d t ˆ g ( η )e ix ( ξ + η ) d ξ d η. ˆ BHT( f, g )( x ) = p . v . t ∼ f ( ξ )ˆ R ξ>η Multiplier singular on a line { ξ = η } ❀ modulation invariant paraproduct : BHT( M ζ f, M ζ g ) = M 2 ζ BHT( f, g ) Same scaling as pointwise product ❀ H¨ older-type bounds: 1 + 1 = 1 BHT : L p 1 ,q 1 ( R ) × L p 2 ,q 2 ( R ) → L p 3 ,q 3 ( R ) = ⇒ p 1 p 2 p 3 Lacey and Thiele showed BHT : L p 1 ( R ) × L p 2 ( R ) → L p 3 ( R ) older tuple with p 1 , p 2 > 1 and p 3 > 2 whenever ( p 1 , p 2 , p 3 ) H¨ 3 . F. Di Plinio (Rome Tor Vergata) Endpoint bounds 3 / 15

  5. The Bilinear Hilbert Transform ˆ f ( x − t ) g ( x + t )d t ˆ g ( η )e ix ( ξ + η ) d ξ d η. ˆ BHT( f, g )( x ) = p . v . t ∼ f ( ξ )ˆ R ξ>η Multiplier singular on a line { ξ = η } ❀ modulation invariant paraproduct : BHT( M ζ f, M ζ g ) = M 2 ζ BHT( f, g ) Same scaling as pointwise product ❀ H¨ older-type bounds: 1 + 1 = 1 BHT : L p 1 ,q 1 ( R ) × L p 2 ,q 2 ( R ) → L p 3 ,q 3 ( R ) = ⇒ p 1 p 2 p 3 Lacey and Thiele showed BHT : L p 1 ( R ) × L p 2 ( R ) → L p 3 ( R ) older tuple with p 1 , p 2 > 1 and p 3 > 2 whenever ( p 1 , p 2 , p 3 ) H¨ 3 . F. Di Plinio (Rome Tor Vergata) Endpoint bounds 3 / 15

  6. The Bilinear Hilbert Transform ˆ f ( x − t ) g ( x + t )d t ˆ g ( η )e ix ( ξ + η ) d ξ d η. ˆ BHT( f, g )( x ) = p . v . t ∼ f ( ξ )ˆ R ξ>η Multiplier singular on a line { ξ = η } ❀ modulation invariant paraproduct : BHT( M ζ f, M ζ g ) = M 2 ζ BHT( f, g ) Same scaling as pointwise product ❀ H¨ older-type bounds: 1 + 1 = 1 BHT : L p 1 ,q 1 ( R ) × L p 2 ,q 2 ( R ) → L p 3 ,q 3 ( R ) = ⇒ p 1 p 2 p 3 Lacey and Thiele showed BHT : L p 1 ( R ) × L p 2 ( R ) → L p 3 ( R ) older tuple with p 1 , p 2 > 1 and p 3 > 2 whenever ( p 1 , p 2 , p 3 ) H¨ 3 . F. Di Plinio (Rome Tor Vergata) Endpoint bounds 3 / 15

  7. Fourier and Walsh models for BHT • Discretize into squares Q = ω × | ω | + ω ❀ dist( Q, { ξ = η } ) ∼ | ω | � • supp ˆ BHT( f, g ) = supp � f ⊂ ω, supp ˆ g ⊂ | ω | + ω ❀ supp fg = ⊂ 2 | ω | + ω Model sum Setting s = I s × ω s , s 1 = I s × ( ω s + | ω s | ) , s 2 = I s × ( ω s + 2 | ω s | ) , � 1 BHT( f, g )( x ) ∼ BHT ( f, g )( x ) = � f, ϕ s �� g, ϕ s 1 � ϕ s 2 ( x ) � | I s | s ∈ S u Rmk. The models BHT fail to map into L p 3 for p 3 < 2 3 . Not known for BHT . 3 candidate range for BHT on L 1 × L 2 . 2 What about p 3 = 2 3 ? L F. Di Plinio (Rome Tor Vergata) Endpoint bounds 4 / 15

  8. Fourier and Walsh models for BHT • Discretize into squares Q = ω × | ω | + ω ❀ dist( Q, { ξ = η } ) ∼ | ω | � • supp ˆ BHT( f, g ) = supp � f ⊂ ω, supp ˆ g ⊂ | ω | + ω ❀ supp fg = ⊂ 2 | ω | + ω Model sum Setting s = I s × ω s , s 1 = I s × ( ω s + | ω s | ) , s 2 = I s × ( ω s + 2 | ω s | ) , � 1 BHT( f, g )( x ) ∼ BHT ( f, g )( x ) = � f, ϕ s �� g, ϕ s 1 � ϕ s 2 ( x ) � | I s | s ∈ S u Rmk. The models BHT fail to map into L p 3 for p 3 < 2 3 . Not known for BHT . 3 candidate range for BHT on L 1 × L 2 . 2 What about p 3 = 2 3 ? L F. Di Plinio (Rome Tor Vergata) Endpoint bounds 4 / 15

  9. Fourier and Walsh models for BHT • Discretize into squares Q = ω × | ω | + ω ❀ dist( Q, { ξ = η } ) ∼ | ω | � • supp ˆ BHT( f, g ) = supp � f ⊂ ω, supp ˆ g ⊂ | ω | + ω ❀ supp fg = ⊂ 2 | ω | + ω Model sum Setting s = I s × ω s , s 1 = I s × ( ω s + | ω s | ) , s 2 = I s × ( ω s + 2 | ω s | ) , � 1 BHT( f, g )( x ) ∼ BHT ( f, g )( x ) = � f, ϕ s �� g, ϕ s 1 � ϕ s 2 ( x ) � | I s | s ∈ S u Rmk. The models BHT fail to map into L p 3 for p 3 < 2 3 . Not known for BHT . 3 candidate range for BHT on L 1 × L 2 . 2 What about p 3 = 2 3 ? L F. Di Plinio (Rome Tor Vergata) Endpoint bounds 4 / 15

  10. Fourier and Walsh models for BHT • Discretize into squares Q = ω × | ω | + ω ❀ dist( Q, { ξ = η } ) ∼ | ω | � • supp ˆ BHT( f, g ) = supp � f ⊂ ω, supp ˆ g ⊂ | ω | + ω ❀ supp fg = ⊂ 2 | ω | + ω Model sum Setting s = I s × ω s , s 1 = I s × ( ω s + | ω s | ) , s 2 = I s × ( ω s + 2 | ω s | ) , � 1 BHT( f, g )( x ) ∼ BHT ( f, g )( x ) = � f, ϕ s �� g, ϕ s 1 � ϕ s 2 ( x ) � | I s | s ∈ S u Rmk. The models BHT fail to map into L p 3 for p 3 < 2 3 . Not known for BHT . 3 candidate range for BHT on L 1 × L 2 . 2 What about p 3 = 2 3 ? L F. Di Plinio (Rome Tor Vergata) Endpoint bounds 4 / 15

  11. RWT bounds for BHT and near-endpoint results Conj. BHT : L p 1 × L p 2 → L 2 3 , ∞ p 1 + 1 1 p 2 = 3 ∀ 1 < p 1 , p 2 < 2 , 2 . Appropriate substitutes near L 1 × L 2 . LT result follows via (generalized) RWT interpolation of 1 p 2 | G 3 | 1 − 1 1 p 1 | F 2 | (RWE) |� BHT ( f 1 , f 2 ) , f 3 �| � | F 1 | p 3 , | f j | ≤ 1 F j where F 3 ⊂ G 3 major set , in the open range 1 < p 1 , p 2 ≤ ∞ , p 3 > 2 3 Estimate (RWE) for p 3 = 2 3 (weaker than Conj.) is OPEN Theorem (Bilyk-Grafakos06) Log-bumped version near (1 , 2 , 2 3 ) : for | F 1 | ≤| F 2 | � � 2 . | F 3 | 2 2 | F 3 | − 1 1 2 log (BG) |� BHT ( f 1 , f 2 ) , f 3 �| � | F 1 || F 2 | e + | F 1 || F 2 | F. Di Plinio (Rome Tor Vergata) Endpoint bounds 5 / 15

  12. RWT bounds for BHT and near-endpoint results Conj. BHT : L p 1 × L p 2 → L 2 3 , ∞ p 1 + 1 1 p 2 = 3 ∀ 1 < p 1 , p 2 < 2 , 2 . Appropriate substitutes near L 1 × L 2 . LT result follows via (generalized) RWT interpolation of 1 p 2 | G 3 | 1 − 1 1 p 1 | F 2 | (RWE) |� BHT ( f 1 , f 2 ) , f 3 �| � | F 1 | p 3 , | f j | ≤ 1 F j where F 3 ⊂ G 3 major set , in the open range 1 < p 1 , p 2 ≤ ∞ , p 3 > 2 3 Estimate (RWE) for p 3 = 2 3 (weaker than Conj.) is OPEN Theorem (Bilyk-Grafakos06) Log-bumped version near (1 , 2 , 2 3 ) : for | F 1 | ≤| F 2 | � � 2 . | F 3 | 2 2 | F 3 | − 1 1 2 log (BG) |� BHT ( f 1 , f 2 ) , f 3 �| � | F 1 || F 2 | e + | F 1 || F 2 | F. Di Plinio (Rome Tor Vergata) Endpoint bounds 5 / 15

  13. RWT bounds for BHT and near-endpoint results Conj. BHT : L p 1 × L p 2 → L 2 3 , ∞ p 1 + 1 1 p 2 = 3 ∀ 1 < p 1 , p 2 < 2 , 2 . Appropriate substitutes near L 1 × L 2 . LT result follows via (generalized) RWT interpolation of 1 p 2 | G 3 | 1 − 1 1 p 1 | F 2 | (RWE) |� BHT ( f 1 , f 2 ) , f 3 �| � | F 1 | p 3 , | f j | ≤ 1 F j where F 3 ⊂ G 3 major set , in the open range 1 < p 1 , p 2 ≤ ∞ , p 3 > 2 3 Estimate (RWE) for p 3 = 2 3 (weaker than Conj.) is OPEN Theorem (Bilyk-Grafakos06) Log-bumped version near (1 , 2 , 2 3 ) : for | F 1 | ≤| F 2 | � � 2 . | F 3 | 2 2 | F 3 | − 1 1 2 log (BG) |� BHT ( f 1 , f 2 ) , f 3 �| � | F 1 || F 2 | e + | F 1 || F 2 | F. Di Plinio (Rome Tor Vergata) Endpoint bounds 5 / 15

  14. RWT bounds for BHT and near-endpoint results Conj. BHT : L p 1 × L p 2 → L 2 3 , ∞ p 1 + 1 1 p 2 = 3 ∀ 1 < p 1 , p 2 < 2 , 2 . Appropriate substitutes near L 1 × L 2 . LT result follows via (generalized) RWT interpolation of 1 p 2 | G 3 | 1 − 1 1 p 1 | F 2 | (RWE) |� BHT ( f 1 , f 2 ) , f 3 �| � | F 1 | p 3 , | f j | ≤ 1 F j where F 3 ⊂ G 3 major set , in the open range 1 < p 1 , p 2 ≤ ∞ , p 3 > 2 3 Estimate (RWE) for p 3 = 2 3 (weaker than Conj.) is OPEN Theorem (Bilyk-Grafakos06) Log-bumped version near (1 , 2 , 2 3 ) : for | F 1 | ≤| F 2 | � � 2 . | F 3 | 2 2 | F 3 | − 1 1 2 log (BG) |� BHT ( f 1 , f 2 ) , f 3 �| � | F 1 || F 2 | e + | F 1 || F 2 | F. Di Plinio (Rome Tor Vergata) Endpoint bounds 5 / 15

  15. RWT bounds for BHT and near-endpoint results Theorems (Carro-Grafakos-Martell-Soria09) 3 , ∞ : weighted Lorentz quasi-Banach space � 2 2 3 , ∞ Proxy for L L 3 log(e+ t ) f ∗ ( t ) . t 2 � f � � 3 , ∞ = sup 2 t> 0 L Using (RWE) and bilinear extrapolation 3 → � BHT : L 1 , 2 3 × L 2 , 2 4 4 2 3 , ∞ 3 (log L ) 3 (log L ) (CGMS1) L Using (RWE) and ( ε, δ ) -atomic approximability of BHT 3 → � 2 + η × L 2 , 2 1 1 4 2 (CGMS2) BHT : L (log L ) 2 (log 2 L ) 3 , ∞ 2 (log 3 L ) 3 (log L ) L F. Di Plinio (Rome Tor Vergata) Endpoint bounds 6 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend