eli ben ha m lpnhe in2p3 sorbonne university paris on
play

Eli Ben-Ham LPNHE - IN2P3 - Sorbonne University (Paris) On behalf of - PowerPoint PPT Presentation

Eli Ben-Ham LPNHE - IN2P3 - Sorbonne University (Paris) On behalf of the BABAR collaboration The BABAR detector Silicon Vertex Tracker Magnet 1.5T PEP-II: asymmetric e + (3GeV) beams at (4S) threshold Drift Chamber (9 GeV) - e


  1. Eli Ben-Haïm LPNHE - IN2P3 - Sorbonne University (Paris) On behalf of the BABAR collaboration

  2. The BABAR detector Silicon Vertex Tracker Magnet 1.5T PEP-II: asymmetric e + (3GeV) beams at Υ (4S) threshold Drift Chamber (9 GeV) - e Detector of Instrumented Cherenkov light flux return Electromagnetic calorimeter BABAR is well suited for the measurements presented here: clean environment, hermetic detector, excellent PID, good π 0 reconstruction Eli Ben-Haim Moriond EW, March 22nd 2019 2

  3. The BABAR dataset BABAR in operation: 1999 –2008 The analyses presented use the full BaBar dataset: ~430 fb -1 at the Υ (4S) ~50 fb -1 40 MeV below (off peak) ( à ∼ 435M τ + τ − pairs) Eli Ben-Haim Moriond EW, March 22nd 2019 3

  4. V us in tau decays Branching fractions of τ − → K − n π 0 ν τ (n = 0,1,2,3) and τ − → π − n π 0 ν τ (n = 3, 4) Partially documented in Tau 2018 proceedings (https://scipost.org/SciPostPhysProc.1.001) First presented in ICHEP 2018 Expected to be published in 2019 Eli Ben-Haim Moriond EW, March 22nd 2019 4

  5. τ − → K − n π 0 ν τ Main ways to determine |V us | Kaon decays (K ℓ 3 ) K → πℓυ (K ℓ 2 ) K → ℓυ / K → ℓυ CKM unitarity τ lepton decays “Inclusive” τ → s (sum of exclusives) ⭐ This talk τ → K υ τ / τ → πυ τ The results from τ decays are systematically lower à Inclusive τ → s is 3.1 σ lower than the derivation based on CKM unitarity Eli Ben-Haim Moriond EW, March 22nd 2019 5

  6. τ − → K − n π 0 ν τ |V us | from “inclusive” τ → s BF ( ... ) R ( τ → X s ν ) = R ( τ → X d ν ) R ( ... ) ≡ − δ R τ ,SU 3 BF ( τ → e ν τ ν e ) | V us | 2 | V ud | 2 [JHEP 01 (2003), 060 ; PRL 94 (2005), 011803] Significant part of the experimental uncertainties originates from τ − → K − n π 0 ν τ Large theoretical uncertainty Break-down of sources of relative uncertainties on |V us |( τ → s) [%] [Plot from Alberto Lusiani] Eli Ben-Haim Moriond EW, March 22nd 2019 6

  7. Analysis method τ − → K − n π 0 ν τ Basics Divide event into two hemispheres along thrust axis Require one track in each (oppositely charged) and no additional tracks e ± or µ ± (tag side) π ± or K ± (signal side) Reconstruct 0 to 4 π 0 → γγ require no additional γ Apply reconstruction- and PID- eff. corrections based on MC and control samples e + / µ + Correct for fake γ from neutrons in the EM calorimeter Control modes w/ similar topology, σ (BF) ~ 1%: Signal modes (1-prong): τ − →π − n π 0 ν τ (n=0,1,2) τ − → K − n π 0 ν τ (n=0,1,2,3) τ − →µ − ν µ ν τ τ − →π − n π 0 ν τ (n=3,4) Eli Ben-Haim Moriond EW, March 22nd 2019 7

  8. Analysis method τ − → K − n π 0 ν τ Event selection Requirements to suppress different types of background events: [q q ] low multiplicity and large thrust [Bhabha and dimuon events] large missing mass [Two photon events] cut on transverse momentum/missing energy Signal final states with K 0 S → 2 π 0 and η → 3 π 0 are subtracted as backgrounds Mode # selected Purity (%) ε (%) events τ – → K − ν τ 80715 77 0.99 τ – → K − π 0 ν τ 146948 65 2.16 τ – → K − 2 π 0 ν τ 17930 38 1.34 τ – → K − 3 π 0 ν τ 1863 21 0.13 τ – → π − 3 π 0 ν τ 58598 83 0.49 τ – → π − 4 π 0 ν τ 1706 57 0.12 Eli Ben-Haim Moriond EW, March 22nd 2019 8

  9. τ − → K − n π 0 ν τ Background and cross-feed 3 3 3 3 10 10 10 10 × × × × Events / 0.1 [GeV/c] Events / 0.1 [GeV/c] Events / 0.1 [GeV/c] Events / 0.1 [GeV/c] 7 7 Plots: p of the single 4.5 4.5 BABAR K − ν τ BABAR K − π 0 ν τ 6 6 4 4 Preliminary Preliminary 3.5 3.5 signal-hemisphere track 5 5 3 3 4 4 2.5 2.5 for the 6 signal modes 2 2 3 3 1.5 1.5 2 2 1 1 MC distributions 1 1 0.5 0.5 0 0 0 0 weighted according to 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 3 3 3.5 3.5 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 3 3 3.5 3.5 p [GeV/c] p [GeV/c] p [GeV/c] p [GeV/c] the measured BFs Events / 0.1 [GeV/c] Events / 0.1 [GeV/c] Events / 0.1 [GeV/c] Events / 0.1 [GeV/c] BABAR K − 3 π 0 ν τ BABAR 900 900 K − 2 π 0 ν τ 100 100 Preliminary 800 800 Preliminary 700 700 Generally: small S/B 80 80 600 600 500 500 60 60 ratio. 400 400 40 40 300 300 200 200 Much cross feed; better 20 20 100 100 0 0 0 0 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 3 3 3.5 3.5 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 3 3 3.5 3.5 accounted for thanks to p [GeV/c] p [GeV/c] p [GeV/c] p [GeV/c] 3 3 10 10 × × the simultaneous fit Events / 0.1 [GeV/c] Events / 0.1 [GeV/c] Events / 0.1 [GeV/c] Events / 0.1 [GeV/c] 3.5 3.5 π − 3 π 0 ν τ π − 4 π 0 ν τ 100 100 3 3 Differences between 2.5 2.5 80 80 BABAR BABAR 2 2 60 60 Data-MC within Preliminary Preliminary 1.5 1.5 40 40 1 1 systematic uncertainties 20 20 0.5 0.5 0 0 0 0 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 3 3 3.5 3.5 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 3 3 3.5 3.5 p [GeV/c] p [GeV/c] p [GeV/c] p [GeV/c] - 0 - - - K - - Data τ → π ν τ → η ν - - K τ → µ ν ν τ → π ν τ τ τ µ τ - 0 - 0 0 - K - - 0 - K - τ → ν τ → π π ν τ → η π ν - e - - K τ → ν ν τ → π π ν τ τ τ e τ τ - 0 0 0 0 0 + - - - - + - - K - e e - τ → π ν τ → π π π ν τ → π η π ν → µ µ - K K τ → ν τ τ τ τ - 0 0 0 0 0 0 0 0 - K - - - 0 - - - + τ → π π ν τ → π π π π ν τ → π η π π ν e e q q - K K → τ → π ν τ τ τ τ - 0 0 0 0 Eli Ben-Haim Moriond EW, March 22nd 2019 0 0 0 0 9 - K - - 0 τ → π π π ν τ → π π π π π ν - Rest - - K K τ → τ → π ν τ τ τ

  10. Results: branching fractions τ − → K − n π 0 ν τ comparison to world average and previous results K − ν τ K − π 0 ν τ π − 3 π 0 ν τ Plots from CLEO 1994 CLEO 1994 Alberto Lusiani 0.510 0.100 0.070 0.660 ± 0.070 ± 0.090 ± ± DELPHI 1994 ALEPH 1999 (CKM 2018) 0.444 0.026 0.024 0.850 0.180 ± ± ± OPAL 2004 ALEPH 1999 0.471 ± 0.059 ± 0.023 0.696 ± 0.025 ± 0.014 BaBar 2007 ALEPH 05C OPAL 2001 0.416 ± 0.003 ± 0.018 0.977 ± 0.069 ± 0.058 0.658 ± 0.027 ± 0.029 HFLAV Spring 2017 HFLAV Spring 2017 BaBar 2010 0.433 0.015 1.029 0.075 0.692 0.006 0.010 ± ± ± ± BaBar ICHEP 2018 BaBar ICHEP 2018 HFLAV Spring 2017 0.505 0.002 0.015 1.168 0.006 0.038 ± ± ± ± 0.696 ± 0.010 BaBar ICHEP 2018 0.4 0.5 0.6 0.9 1 1.1 1.2 A.L. elab. A.L. elab. 0.717 0.003 0.021 - ± ± - - 0 B( K 0 ) [%] - 0 τ → π ν B( τ → π 3 π ν (ex. K )) [%] τ τ CKM 2018 CKM 2018 0.6 0.7 0.8 A.L. elab. - - B( τ → K ν ) [%] τ CKM 2018 K − 2 π 0 ν τ K − 3 π 0 ν τ π − 4 π 0 ν τ CLEO 1994 9.000 10.000 3.000 ± ± ALEPH 1999 ALEPH 1999 ALEPH 2005 5.600 2.000 1.500 3.700 2.100 1.100 0.112 0.037 0.035 ± ± ± ± ± ± HFLAV Spring 2017 HFLAV Spring 2017 HFLAV Spring 2017 6.398 ± 2.204 4.284 ± 2.161 0.110 ± 0.039 BaBar ICHEP 2018 BaBar ICHEP 2018 BaBar ICHEP 2018 6.151 0.117 0.338 1.246 0.164 0.238 0.090 0.004 0.007 ± ± ± ± ± ± 0 5 10 2 4 6 0.1 0.15 A.L. elab. A.L. elab. A.L. elab. - 0 - 0 - 0 - -4 - -4 - 0 0 0 B( τ → K 2 π ν (ex. K )) [ × 10 ] B( τ → K 3 π ν (ex. K , η )) [ × 10 ] B( τ → h 4 π ν (ex. K , η )) [%] τ τ τ CKM 2018 CKM 2018 CKM 2018 The new BABAR results improve the knowledge of these BFs except for BF( τ − → K − ν τ ) (for which the 2010 result has better accuracy) Eli Ben-Haim Moriond EW, March 22nd 2019 10

  11. τ − → K − n π 0 ν τ Impact on V us (I) Break-down of sources of relative uncertainties on |V us |( τ → s) [%] including new measurements [Plot from Alberto Lusiani] Substantial improvement from the present analysis Eli Ben-Haim Moriond EW, March 22nd 2019 11

  12. τ − → K − n π 0 ν τ Impact on V us (II) K , N = 2+1+1, PDG 2018 l3 f 0.2231 0.0008 ± K , N = 2+1+1, PDG 2018 l2 f 0.2253 0.0007 ± CKM unitarity, PDG 2018 0.2256 0.0009 Break-down of ± s incl., HFLAV Spring 2017 τ → sources of 0.2186 0.0021 ± uncertainties on s incl., A.L. PHIPSI 2019 τ → 0.2195 0.0019 ± |Vus|( τ → s) 0.22 0.225 A. Lusiani |V | us PHIPSI 2019 Slight increase of the central value and reduced uncertainty V us from τ → s “inclusive” branching fractions is still ~3 σ away from the value derived from CKM unitarity Eli Ben-Haim Moriond EW, March 22nd 2019 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend