eigencircles of 2 2 matrices
play

Eigencircles of 2 2 matrices Graham Farr Faculty of IT Monash - PowerPoint PPT Presentation

Eigencircles of 2 2 matrices Graham Farr Faculty of IT Monash University Graham.Farr@infotech.monash.edu.au 18 July 2007 Joint work with Michael Englefield (School of Mathematical Sciences, Monash) Eigenvalues and eigenpairs Eigenvalue of


  1. Eigencircles of 2 × 2 matrices Graham Farr Faculty of IT Monash University Graham.Farr@infotech.monash.edu.au 18 July 2007 Joint work with Michael Englefield (School of Mathematical Sciences, Monash)

  2. Eigenvalues and eigenpairs Eigenvalue of a 2 × 2 matrix: number λ such that � a � � x � x � � b = λ c d y y with x , y not both 0. To start with, λ ∈ R .

  3. Eigenvalues and eigenpairs Eigenvalue of a 2 × 2 matrix: number λ such that � a � � x � x � � b = λ c d y y with x , y not both 0. To start with, λ ∈ R . � λ � 0 Field isomorphism: λ ← → 0 λ

  4. Eigenvalues and eigenpairs Eigenvalue of a 2 × 2 matrix: number λ such that � a � � x � λ � � x � � b 0 = c d y 0 λ y with x , y not both 0. To start with, λ ∈ R . � λ � 0 Field isomorphism: λ ← → 0 λ

  5. Eigenvalues and eigenpairs Eigenvalue of a 2 × 2 matrix: number λ such that � a � � x � λ � � x � � b 0 = c d y 0 λ y with x , y not both 0. To start with, λ ∈ R . � λ � 0 Field isomorphism: λ ← → 0 λ � � λ µ Extend using field isomorphism: λ + µ i ← → − µ λ

  6. Eigenvalues and eigenpairs Eigenvalue of a 2 × 2 matrix: number λ such that � a � � x � λ � � x � � b 0 = c d y 0 λ y with x , y not both 0. To start with, λ ∈ R . � λ � 0 Field isomorphism: λ ← → 0 λ � � λ µ Extend using field isomorphism: λ + µ i ← → − µ λ Eigen pair of a 2 × 2 matrix: ( λ, µ ) ∈ R 2 such that � a � � x � � x � � � b λ µ = c d y − µ λ y with x , y not both 0.

  7. The Eigencircle � a � � x � � x � � � b λ µ = c d y y − µ λ

  8. The Eigencircle � a � � x � � x � � � b λ µ = c d y y − µ λ Eigenpairs must satisfy � � a − λ b − µ � � � = 0 � � c + µ d − λ �

  9. The Eigencircle � a � � x � � x � � � b λ µ = c d y y − µ λ Eigenpairs must satisfy � � a − λ b − µ � � � = 0 � � c + µ d − λ � Some eigenpairs: ( a , b ) , ( a , − c ) , ( d , b ) , ( d , − c ).

  10. The Eigencircle � a � � x � � x � � � b λ µ = c d y y − µ λ Eigenpairs must satisfy � � a − λ b − µ � � � = 0 � � c + µ d − λ � Some eigenpairs: ( a , b ) , ( a , − c ) , ( d , b ) , ( d , − c ). Eigenpairs form a circle, the eigencircle : � 2 � 2 � 2 � 2 � λ − a + d � � a + d � b − c µ − b − c + = + − ( ad − bc ) 2 2 2 2 ) 2 + ( µ − ) 2 f 2 g 2 ( λ − f g = + det A −

  11. The Eigencircle µ − c b a O d λ

  12. The Eigencircle µ H E − c b F G a O d λ

  13. The Eigencircle µ H E − c C b F G a O d λ

  14. The Eigencircle µ H E − c g C b F G a O f d λ

  15. The Eigencircle µ − c g C b a O f d λ

  16. The Eigencircle µ − c g C b R a O f d λ

  17. The Eigencircle µ − c C b R a O d λ

  18. The Eigencircle µ − c C ρ b R √ det A a O d λ

  19. The Eigencircle µ − c C ρ b R √ . . . provided det A > 0 det A a O d λ

  20. The Eigencircle: det A < 0

  21. The Eigencircle: det A < 0 µ C O λ

  22. The Eigencircle: det A < 0 µ C R O λ

  23. The Eigencircle: det A < 0 µ C R ρ O λ √ − det A

  24. The Eigencircle: det A = 0

  25. The Eigencircle: det A = 0 µ C O λ

  26. The Eigencircle: det A = 0 µ C R = ρ O λ

  27. The Eigencircle Determinant    outside > 0    Origin is on  eigencircle det A = 0 ⇐ ⇒ inside < 0  

  28. The Eigencircle Determinant    outside > 0    Origin is on  eigencircle det A = 0 ⇐ ⇒ inside < 0   Real eigenvalues Eigencircle meets λ -axis ⇐ ⇒ eigenvalues are real

  29. Eigenvectors

  30. Eigenvectors Given (real) eigenvalue λ , � a � � x � λ � � x � � b 0 = 0 c d y λ y � x � λ � � � � d get eigenvectors: = any multiple of . − 0 y − c

  31. Eigenvectors Given (real) eigenvalue λ , � a � � x � λ � � x � � b 0 = 0 c d y λ y � x � λ � � � � d get eigenvectors: = any multiple of . − 0 y − c µ ( d , − c ) C O ( λ 1 , 0) ( λ 2 , 0) λ

  32. Eigenvectors For a real symmetric 2 × 2 matrix, distinct real eigenvalues have perpendicular eigenvectors.

  33. Eigenvectors For a real symmetric 2 × 2 matrix, distinct real eigenvalues have perpendicular eigenvectors. Proof without words: µ ( d , − c ) C O ( λ 1 , 0) ( λ 2 , 0) λ

  34. ( λ, µ )-eigenvectors „ x « A ( λ, µ ) -eigenvector is a nonzero corresponding to the y eigenpair ( λ, µ ).

  35. ( λ, µ )-eigenvectors „ x « A ( λ, µ ) -eigenvector is a nonzero corresponding to the y eigenpair ( λ, µ ). µ ( d , − c ) ( λ, µ ) C O λ

  36. ( λ, µ )-eigenvectors „ x « A ( λ, µ ) -eigenvector is a nonzero corresponding to the y eigenpair ( λ, µ ). µ ( d , − c ) ( λ, µ ) C O λ Diametrically opposite eigenpairs have perpendicular ( λ, µ ) -eigenvectors

  37. ( λ, µ )-eigenvectors „ x « A ( λ, µ ) -eigenvector is a nonzero corresponding to the y eigenpair ( λ, µ ). µ ( d , − c ) ( λ, µ ) C O λ ( λ ′ , − µ ′ ) Diametrically opposite eigenpairs have perpendicular ( λ, µ ) -eigenvectors

  38. Power and determinant R C Q Euclid’s Elements III.35–36: Power of point = PQ · PR , independent of direction of line P

  39. Power and determinant R C Q Euclid’s Elements III.35–36: Power of point = PQ · PR , independent of direction of line P

  40. Power and determinant C R Q Euclid’s Elements III.35–36: Power of point = PQ · PR , independent of direction of line P

  41. Power and determinant C R Q Euclid’s Elements III.35–36: Power of point = PQ · PR , independent of direction of line P

  42. Power and determinant C Q = R Euclid’s Elements III.35–36: Power of point = PQ · PR , independent of direction of line P

  43. Power and determinant eigencircle C Q = R Euclid’s Elements III.35–36: Power of point = PQ · PR , independent of direction of line P

  44. Power and determinant eigencircle C µ Q = R Euclid’s Elements III.35–36: Power of point = PQ · PR , independent of direction of line O = P λ

  45. Power and determinant eigencircle C µ Q = R √ Euclid’s Elements III.35–36: det A Power of point = PQ · PR , independent of direction of line O = P λ

  46. Power and determinant eigencircle det A = power of origin w.r.t. eigencircle C µ Q = R √ Euclid’s Elements III.35–36: det A Power of point = PQ · PR , independent of direction of line O = P λ

  47. Power and determinant

  48. Power and determinant R C P Q Power of point = PQ · PR ; lengths are signed , so now < 0

  49. Power and determinant R C P Q Power of point = PQ · PR ; lengths are signed , so now < 0

  50. Power and determinant C R P Power of point = PQ · PR ; Q lengths are signed , so now < 0

  51. Power and determinant C R P Power of point = PQ · PR ; Q lengths are signed , so now < 0

  52. Power and determinant eigencircle C R P Power of point = PQ · PR ; Q lengths are signed , so now < 0

  53. Power and determinant µ eigencircle C R O λ Power of point = PQ · PR ; Q lengths are signed , so now < 0

  54. Power and determinant µ eigencircle C R O λ Power of point = PQ · PR ; Q lengths are signed , so now < 0 √ − det A

  55. Power and determinant µ det A = power of origin eigencircle w.r.t. eigencircle C R O λ Power of point = PQ · PR ; Q lengths are signed , so now < 0 √ − det A

  56. Power and discriminant

  57. Power and discriminant λ 2 − ( a + d ) λ + ( ad − bc ) = 0 Characteristic equation of A :

  58. Power and discriminant λ 2 − ( a + d ) λ + ( ad − bc ) = 0 Characteristic equation of A : Real eigenvalues:

  59. Power and discriminant λ 2 − ( a + d ) λ + ( ad − bc ) = 0 Characteristic equation of A : Real eigenvalues: Discriminant: ( a + d ) 2 − 4 det A ∆ = µ 4( f 2 − det A ) = N 4( ρ 2 − g 2 ) = = − 4( g − ρ )( g + ρ ) = − 4 · YM · YN = − 4 · (power of Y ) C Y O λ L 1 L 2 ( λ 1 , 0) ( λ 2 , 0) M

  60. Power and discriminant λ 2 − ( a + d ) λ + ( ad − bc ) = 0 Characteristic equation of A : Real eigenvalues: Discriminant: ( a + d ) 2 − 4 det A ∆ = µ 4( f 2 − det A ) = N 4( ρ 2 − g 2 ) = = − 4( g − ρ )( g + ρ ) = − 4 · YM · YN = − 4 · (power of Y ) 4 · ( YL i ) 2 ; C = Y O λ L 1 L 2 ( λ 1 , 0) ( λ 2 , 0) M

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend