efficient pde optimization under uncertainty using
play

Efficient PDE Optimization under Uncertainty using Adaptive Model - PowerPoint PPT Presentation

Efficient PDE Optimization under Uncertainty using Adaptive Model Reduction and Sparse Grids Matthew J. Zahr Advisor: Charbel Farhat Computational and Mathematical Engineering Stanford University Joint work with: Kevin Carlberg (Sandia CA),


  1. Efficient PDE Optimization under Uncertainty using Adaptive Model Reduction and Sparse Grids Matthew J. Zahr Advisor: Charbel Farhat Computational and Mathematical Engineering Stanford University Joint work with: Kevin Carlberg (Sandia CA), Drew Kouri (Sandia NM) SIAM Annual Meeting MS 137: Model Reduction of Parametrized PDEs Boston, Massachusetts, USA July 15, 2016

  2. • ‒ ‒ ‒ • ‒ • Multiphysics optimization – a key player in next-gen problems Current interest in computational physics reaches far beyond analysis of a single configuration of a physical system into design (shape and topology) and control in an uncertain setting Micro-Aerial Vehicle EM Launcher Engine System

  3. PDE-constrained optimization under uncertainty Goal: Efficiently solve stochastic PDE-constrained optimization problems minimize E [ J ( u , µ , · )] µ ∈ R n µ subject to r ( u ; µ , ξ ) = 0 ∀ ξ ∈ Ξ r : R n u × R n µ × R n ξ → R n u discretized stochastic PDE J : R n u × R n µ × R n ξ → R quantity of interest u ∈ R n u PDE state vector µ ∈ R n µ (deterministic) optimization parameters ξ ∈ R n ξ stochastic parameters � E [ F ] ≡ F ( ξ ) ρ ( ξ ) d ξ Ξ Each function evaluation requires integration over stochastic space – expensive

  4. Proposed approach: managed two-level inexactness Two levels of inexactness to obtain an inexpensive, approximation model Anisotropic sparse grids used for inexact integration of risk measures Reduced-order models used for inexact evaluations at collocation nodes minimize F ( µ ) − → minimize m k ( µ ) µ ∈ R n µ µ ∈ R n µ

  5. Proposed approach: managed two-level inexactness Two levels of inexactness to obtain an inexpensive, approximation model Anisotropic sparse grids used for inexact integration of risk measures Reduced-order models used for inexact evaluations at collocation nodes minimize F ( µ ) − → minimize m k ( µ ) µ ∈ R n µ µ ∈ R n µ Manage inexactness with trust-region method Embedded in globally convergent trust-region method Error indicators to account for both sources of inexactness Refinement of integral approximation and reduced-order model via dimension-adaptive sparse grids and a greedy method over collocation nodes minimize m k ( µ ) µ ∈ R n µ minimize F ( µ ) − → µ ∈ R n µ subject to || µ − µ k || ≤ ∆ k

  6. The connection between the objective function and model First-order consistency [Alexandrov et al., 1998] m k ( µ k ) = F ( µ k ) ∇ m k ( µ k ) = ∇ F ( µ k ) The Carter condition [Carter, 1989, Carter, 1991] ||∇ F ( µ k ) − ∇ m k ( µ k ) || ≤ η ||∇ m k ( µ k ) || η ∈ (0 , 1) Asymptotic gradient bound [Heinkenschloss and Vicente, 2002] ||∇ F ( µ k ) − ∇ m k ( µ k ) || ≤ ξ min {||∇ m k ( µ k ) || , ∆ k } ξ > 0 Asymptotic gradient bound permits the use of error indicator: ϕ k ||∇ F ( µ ) − ∇ m k ( µ ) || ≤ ξϕ k ( µ ) ξ > 0 ϕ k ( µ k ) ≤ κ min {||∇ m k ( µ ) || , ∆ k }

  7. Trust region method with inexact gradients [Kouri et al., 2013] 1: Model update : Choose model m k and error indicator ϕ k ϕ k ( µ k ) ≤ κ min {||∇ m k ( µ ) || , ∆ k } 2: Step computation : Approximately solve the trust-region subproblem ˆ = arg min µ ∈ R n µ m k ( µ ) subject to || µ − µ k || ≤ ∆ k µ k 3: Step acceptance : Compute actual-to-predicted reduction F ( µ k ) − F (ˆ µ k ) ρ k = m k ( µ k ) − m k (ˆ µ k ) µ k +1 = ˆ if ρ k ≥ η 1 then µ k else µ k +1 = µ k end if 4: Trust-region update : if ρ k ≤ η 1 then ∆ k +1 ∈ (0 , γ || ˆ µ − µ k || ] end if if ρ k ∈ ( η 1 , η 2 ) then ∆ k +1 ∈ [ γ || ˆ µ − µ k || , ∆ k ] end if if ρ k ≥ η 2 then ∆ k +1 ∈ [∆ k , ∆ max ] end if

  8. Trust region method with inexact gradients and objective 1: Model update : Choose model m k and error indicator ϕ k ϕ k ( µ k ) ≤ κ min {||∇ m k ( µ ) || , ∆ k } 2: Step computation : Approximately solve the trust-region subproblem ˆ = arg min µ ∈ R n µ m k ( µ ) subject to || µ − µ k || ≤ ∆ k µ k 3: Step acceptance : Compute approximation of actual-to-predicted reduction ρ k = ψ k ( µ k ) − ψ k (ˆ µ k ) m k ( µ k ) − m k (ˆ µ k ) µ k +1 = ˆ if ρ k ≥ η 1 then µ k else µ k +1 = µ k end if 4: Trust-region update : if ρ k ≤ η 1 then ∆ k +1 ∈ (0 , γ || ˆ µ − µ k || ] end if if ρ k ∈ ( η 1 , η 2 ) then ∆ k +1 ∈ [ γ || ˆ µ − µ k || , ∆ k ] end if if ρ k ≥ η 2 then ∆ k +1 ∈ [∆ k , ∆ max ] end if

  9. Inexact objective function evaluations Asymptotic objective decrease bound [Kouri et al., 2014] µ k ) , r k } 1 /ω | F ( µ k ) − F (ˆ µ k ) + ψ k (ˆ µ k ) − ψ k ( µ k ) | ≤ σ min { m k ( µ k ) − m k (ˆ where ω ∈ (0 , 1), r k → 0, σ > 0 Asymptotic objective decrease bound permits the use of error indicator: θ k | F ( µ k ) − F ( µ ) + ψ k ( µ ) − ψ k ( µ k ) | ≤ σθ k ( µ ) σ > 0 µ k ) ω ≤ η min { m k ( µ k ) − m k (ˆ θ k (ˆ µ k ) , r k }

  10. Trust region method ingredients for global convergence Approximation models m k ( µ ) , ψ k ( µ ) Error indicators ||∇ F ( µ ) − ∇ m k ( µ ) || ≤ ξϕ k ( µ ) ζ > 0 | F ( µ k ) − F ( µ ) + ψ k ( µ ) − ψ k ( µ k ) | ≤ σθ k ( µ ) σ > 0 Adaptivity ϕ k ( µ k ) ≤ κ min {||∇ m k ( µ ) || , ∆ k } µ k ) ω ≤ η min { m k ( µ k ) − m k (ˆ θ k (ˆ µ k ) , r k } Global convergence lim inf ||∇ F ( µ k ) || = 0 k →∞

  11. First layer of inexactness : anisotropic sparse grids Stochastic collocation using anisotropic sparse grid nodes to approximate integral with summation minimize E [ J ( u , µ , · )] u ∈ R n u , µ ∈ R n µ subject to r ( u , µ , ξ ) = 0 ∀ ξ ∈ Ξ ⇓ minimize E I [ J ( u , µ , · )] u ∈ R n u , µ ∈ R n µ subject to r ( u , µ , ξ ) = 0 ∀ ξ ∈ Ξ I [Kouri et al., 2013, Kouri et al., 2014]

  12. Second layer of inexactness : reduced-order models Stochastic collocation of the reduced-order model over anisotropic sparse grid nodes used to approximate integral with cheap summation minimize E [ J ( u , µ , · )] u ∈ R n u , µ ∈ R n µ subject to r ( u , µ , ξ ) = 0 ∀ ξ ∈ Ξ ⇓ minimize E I [ J ( u , µ , · )] u ∈ R n u , µ ∈ R n µ subject to r ( u , µ , ξ ) = 0 ∀ ξ ∈ Ξ I ⇓ minimize E I [ J ( Φ y , µ , · )] y ∈ R k u , µ ∈ R n µ Φ T r ( Φ y , µ , ξ ) = 0 subject to ∀ ξ ∈ Ξ I

  13. First two ingredients for global convergence Approximation models built on two levels of inexactness m k ( µ ) = E I k [ J ( Φ k y ( µ , · ) , µ , · )] k [ J ( Φ ′ ψ k ( µ ) = k y ( µ , · ) , µ , · )] E I ′ Error indicators that account for both sources of error ϕ k ( µ ) = α 1 E 1 ( µ ; I k , Φ k ) + α 2 E 2 ( µ ; I k , Φ k ) + α 3 E 4 ( µ ; I k , Φ k ) θ k ( µ ) = β 1 ( E 1 ( µ ; I ′ k , Φ ′ k ) + E 1 ( µ k ; I ′ k , Φ ′ k )) + β 2 ( E 3 ( µ ; I ′ k , Φ ′ k ) + E 3 ( µ k ; I ′ k , Φ ′ k )) Reduced-order model errors E 1 ( µ ; I , Φ ) = E I ∪ N ( I ) [ || r ( Φ y ( µ , · ) , µ , · ) || ] �� �� � r λ ( Φ y ( µ , · ) , Ψ λ r ( µ , · ) , µ , · ) � �� E 2 ( µ ; I , Φ ) = E I ∪ N ( I ) �� Sparse grid truncation errors E 3 ( µ ; I , Φ ) = E N ( I ) [ |J ( Φ y ( µ , · ) , µ , · ) | ] E 4 ( µ ; I , Φ ) = E N ( I ) [ ||∇J ( Φ y ( µ , · ) , µ , · ) || ]

  14. Derivation of gradient error indicator For brevity, let J ( ξ ) ← J ( u ( µ , ξ ) , µ , ξ ) ∇J ( ξ ) ← ∇J ( u ( µ , ξ ) , µ , ξ ) J r ( ξ ) = J ( Φ y ( µ , ξ ) , µ , ξ ) ∇J r ( ξ ) = ∇J ( Φ y ( µ , ξ ) , µ , ξ ) r r ( ξ ) = r ( Φ y ( µ , ξ ) , µ , ξ ) r λ r ( ξ ) = r λ ( Φ y ( µ , ξ ) , Ψ λ r ( µ , ξ ) , µ , ξ ) Separate total error into contributions from ROM inexactness and SG truncation || E [ ∇J ] − E I [ ∇J r ] || ≤ E [ ||∇J − ∇J r || ] + || E [ ∇J r ] − E I [ ∇J r ] ||

  15. Derivation of gradient error indicator For brevity, let J ( ξ ) ← J ( u ( µ , ξ ) , µ , ξ ) ∇J ( ξ ) ← ∇J ( u ( µ , ξ ) , µ , ξ ) J r ( ξ ) = J ( Φ y ( µ , ξ ) , µ , ξ ) ∇J r ( ξ ) = ∇J ( Φ y ( µ , ξ ) , µ , ξ ) r r ( ξ ) = r ( Φ y ( µ , ξ ) , µ , ξ ) r λ r ( ξ ) = r λ ( Φ y ( µ , ξ ) , Ψ λ r ( µ , ξ ) , µ , ξ ) Separate total error into contributions from ROM inexactness and SG truncation || E [ ∇J ] − E I [ ∇J r ] || ≤ E [ ||∇J − ∇J r || ] + || E [ ∇J r ] − E I [ ∇J r ] || ≤ ζ ′ E � r λ � � � �� �� �� + E I c [ ||∇J r || ] α 1 || r || + α 2

  16. Derivation of gradient error indicator For brevity, let J ( ξ ) ← J ( u ( µ , ξ ) , µ , ξ ) ∇J ( ξ ) ← ∇J ( u ( µ , ξ ) , µ , ξ ) J r ( ξ ) = J ( Φ y ( µ , ξ ) , µ , ξ ) ∇J r ( ξ ) = ∇J ( Φ y ( µ , ξ ) , µ , ξ ) r r ( ξ ) = r ( Φ y ( µ , ξ ) , µ , ξ ) r λ r ( ξ ) = r λ ( Φ y ( µ , ξ ) , Ψ λ r ( µ , ξ ) , µ , ξ ) Separate total error into contributions from ROM inexactness and SG truncation || E [ ∇J ] − E I [ ∇J r ] || ≤ E [ ||∇J − ∇J r || ] + || E [ ∇J r ] − E I [ ∇J r ] || ≤ ζ ′ E � r λ � � �� � �� �� + E I c [ ||∇J r || ] α 1 || r || + α 2 � � � �� � r λ � �� �� � α 1 || r || + α 2 + α 3 E N ( I ) [ ||∇J r || ] � ζ E I∪N ( I )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend