efficient approaches to multidimensional quantum dynamics
play

Efficient approaches to multidimensional quantum dynamics: - PowerPoint PPT Presentation

Efficient approaches to multidimensional quantum dynamics: Dynamical pruning in phase, position and configuration space Henrik R. Larsson April 20, 2018 Group Prof. Hartke / Christiana Albertina University of Kiel, Germany Group Prof.


  1. Efficient approaches to multidimensional quantum dynamics: Dynamical pruning in phase, position and configuration space Henrik R. Larsson April 20, 2018 Group Prof. Hartke / Christiana Albertina University of Kiel, Germany Group Prof. Tannor / Weizmann Institute of Science, Rehovot, Israel

  2. How to do molecular quantum dynamics simulations? ? 1 / 13

  3. How to do molecular quantum dynamics simulations? ? � I A I ( t ) | I � direct-product basis wave function I ≡ { i 1 , i 2 , . . . , i D } , i κ ∈ [1 , N κ ] | I � ≡ � D κ =1 | χ κ j κ � | Ψ( t ) � HUGE tensor A , size � D κ =1 N κ i ∂ t | Ψ( t ) � H × A H IJ = � I | ˆ H | J � • TD-FCI: Standard approach in mol. quantum dynamics • Problem: Curse of dimensionality (exponential scaling) 1 / 13

  4. How to do molecular quantum dynamics simulations? ? � I A I ( t ) | I � direct-product basis wave function I ≡ { i 1 , i 2 , . . . , i D } , i κ ∈ [1 , N κ ] | I � ≡ � D κ =1 | χ κ j κ � | Ψ( t ) � HUGE tensor A , size � D κ =1 N κ i ∂ t | Ψ( t ) � H × A H IJ = � I | ˆ H | J � • TD-FCI: Standard approach in mol. quantum dynamics • Problem: Curse of dimensionality (exponential scaling) • Possible loophole: Employ bases that lead to sparse tensors A � Dynamical Pruning (DP) 1 / 13

  5. Dynamical Pruning (DP) PvB phase space bases pW TD-FCI MCTDH DVR FGH primitive basis SPF ... (SPF repre- ( A tensor) sentation) Gauß-Grid

  6. Dynamical Pruning (DP) PvB phase space bases pW TD-FCI MCTDH DVR FGH primitive basis SPF ... (SPF repre- ( A tensor) sentation) Gauß-Grid

  7. DVR/Coordinate-space-localised functions • Exploit locality of | Ψ � in position space: ⇒ • Add/remove neighbors if | A i | > θ / | A i | < θ • Used by Hartke 1 , Wyatt 2 and others. • Easiest to use: DVR/pseudospectral functions • Bonus: Potential is diagonal V ij = δ ij V ( x i ) 1 B. Hartke, Phys. Chem. Chem. Phys. , 2006, 8 , 3627, J. Sielk et al., Phys. Chem. Chem. Phys. , 2009, 11 , 463–475. 2 L. R. Pettey and R. E. Wyatt, Chem. Phys. Lett. , 2006, 424 , 443 –448, L. R. Pettey and R. E. Wyatt, Int. J. Quantum Chem. , 2007, 107 , 1566–1573. 2 / 13

  8. Dynamical Pruning (DP) PvB phase space bases pW TD-FCI MCTDH DVR FGH primitive basis SPF ... (SPF repre- ( A tensor) sentation) Gauß-Grid

  9. Phase-space-localised von Neumann basis � � 1 � , � − α ( x − x n ) 2 + i · p l · ( x − x n ) 4 exp 2 α α = σ p � x | ˜ g n , l � = 2 σ x π • Basis is localised at ( x n , p l ). • Problem: Poor convergence. p x 3 / 13

  10. Phase-space-localised von Neumann basis � � 1 � , � − α ( x − x n ) 2 + i · p l · ( x − x n ) 4 exp 2 α α = σ p � x | ˜ g n , l � = 2 σ x π √ √ FGH (N points) PvN ( N × N points) • Basis is localised at ( x n , p l ). ( x 0 , + P ) • Problem: Poor convergence. · • Solution 1: 3 g n , l vN p 0 ⇐ ⇒ Projected von Neumann (PvN/PvB): | g i � = � δ x δ p j | χ j �� χ j | ˜ g i � ; { χ i } : DVR ∆ x x x Non-Orthogonal! (PvB: biorthogonal basis) 3 A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. , 2012, 109 , 070402, D. J. Tannor et al., Adv. Chem. Phys. , 2018, 163 , in press 3 / 13

  11. Phase-space-localised von Neumann basis � � 1 � , � − α ( x − x n ) 2 + i · p l · ( x − x n ) 4 exp 2 α α = σ p � x | ˜ g n , l � = 2 σ x π • Basis is localised at ( x n , p l ). • Problem: Poor convergence. • + p p • Solution 1: 3 0 Projected von Neumann (PvN/PvB): | g i � = � j | χ j �� χ j | ˜ g i � ; { χ i } : DVR − p • Non-Orthogonal! (PvB: biorthogonal basis) • Solution 2: 4 x Projected Weylets (pW): � � 1 � � � �� � − α ( x − x n ) 2 � sin 4 exp � x | � 8 α φ nl � = p l x − x n − π 8 α π Orthogonal! Less sparse than PvB! 3 A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. , 2012, 109 , 070402, D. J. Tannor et al., Adv. Chem. Phys. , 2018, 163 , in press 4 B. Poirier and A. Salam, J. Chem. Phys. , 2004, 121 , 1690, H. R. Larsson et al., J. Chem. Phys. , 2016, 145 , 3 / 13 204108

  12. Example of a PvB propagation 4 / 13

  13. Multidimensions: Hamiltonian times state: H · A Unpruned case • Assume a SoP Hamilton-Tensor: H = h (1) ⊗ h (2) + . . . • D : dimension, n : 1D basis size, n 2 D : size of H ; n D : size of A • Scaling of H · A : O ( n D +1 ) by sequential summation (as done in electronic integral transformations) 3 D. J. Tannor et al., Adv. Chem. Phys. , 2018, 163 , in press, H. R. Larsson et al., J. Chem. Phys. , 2016, 145 , 204108. 5 / 13

  14. Multidimensions: Hamiltonian times state: H · A Unpruned case • Assume a SoP Hamilton-Tensor: H = h (1) ⊗ h (2) + . . . • D : dimension, n : 1D basis size, n 2 D : size of H ; n D : size of A • Scaling of H · A : O ( n D +1 ) by sequential summation (as done in electronic integral transformations) Pruned case • Pruning: n D − n D → ˜ n D +1 ) scaling possible with new algorithm 3 • O (˜ • ONLY for orthogonal basis • Nonorthogonal basis: S − 1 PvB H PvB A • Pruned S − 1 not of SoP form: O (˜ n 2 D ) scaling 3 D. J. Tannor et al., Adv. Chem. Phys. , 2018, 163 , in press, H. R. Larsson et al., J. Chem. Phys. , 2016, 145 , 204108. 5 / 13

  15. Application: 2D double well • Testing a pruned DVR (FGH), PvB and pW 6 / 13

  16. Application: 2D double well • Testing a pruned DVR (FGH), PvB and pW • Accuracy versus basis size? 10 + 2 pW FGH 1 PvB Infidelity of the autocorrelation 10 − 2 10 − 4 10 − 6 10 − 8 10 − 10 10 − 12 0 10 20 30 40 50 60 70 Mean number of used basis functions / % 6 / 13

  17. Application: 2D double well • Testing a pruned DVR (FGH), PvB and pW • Accuracy versus basis size? • Timing? 10 + 2 pW 1 × 10 6 FGH full FGH time 1 PvB pW 100000 FGH Infidelity of the autocorrelation PvB 10 − 2 10000 Needed time /s 10 − 4 1000 10 − 6 100 10 10 − 8 1 10 − 10 0 . 1 10 + 2 10 − 2 10 − 4 10 − 6 10 − 8 10 − 10 10 − 12 1 10 − 12 Infidelity of the autocorrelation 0 10 20 30 40 50 60 70 Mean number of used basis functions / % FGH/DVR: Potential diagonal, pW: Non-diagonal 6 / 13

  18. Vibr. resonance dynamics of DCO 4 • DP-DVR with filter diagonalization + CAP • Controlled accuracy of pruning for energies and widths • Decay dynamics up to 200 ps with DP-DVR: Confirms polyad model • Comparison with velocity mapped images from Temps Group @ Kiel ∆ E / cm − 1 Γ / cm − 1 (a) ∆ E � 8902 cm − 1 : (2,2,2) 2 02 (b) ∆ E � 8942 cm − 1 : (0,5,0) 2 02 P label Expt. DP Expt. DP 3000 2000 1000 0 3000 2000 1000 0 -1000 v � 0 v � 0 P ( E D )/ arb. units 5 ((034)) 8778 8775 3.50 5.6 v � 1 v � 1 WKS 1.0 SAG 5 ((042)) 8821 8830 <2.00 1.1 0.8 Exp 0.6 5 ((222)) 8902 8895 1.06 1.2 0.4 5 (050) 8942 8950 1.79 0.13 0.2 5 (132) 9050 9029 0.34 0.28 0.0 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 5 (230) 9099 9096 0.20 0.32 (c) ∆ E � 9896 cm − 1 : (2,3,1) 2 02 (d) ∆ E � 10065 cm − 1 : (1,4,1) 2 02 5.5 027 — 9234 — 13 5 ((140)) 9272 9248 0.29 0.31 4000 3000 2000 1000 0 4000 3000 2000 1000 0 v � 0 v � 0 5.5 ((321)) — 9494 — 17 P ( E D )/ arb. units v � 1 v � 1 v � 2 v � 2 1.0 5.5 (043) 9614 9629 2.30 1.4 0.8 5.5 (223) 9686 9688 <5.00 5.5 0.6 0.4 5.5 ((051)) 9757 9762 0.83 0.64 0.2 5.5 ((133)) 9819 9805 <3.00 1.8 0.0 5.5 (231) 9896 9891 1.22 1.6 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 E D / cm − 1 E D / cm − 1 5.5 ((141)) 10065 10044 6.00 3.9 4 H. R. Larsson et al., arXiv:1802.07050; submitted to J. Chem. Phys, 2018. 7 / 13

  19. Dynamical Pruning (DP) PvB phase space bases pW TD-FCI MCTDH DVR FGH primitive basis SPF ... (SPF repre- ( A tensor) sentation) Gauß-Grid

  20. Multi-Configurational Time-Dependent Hartree (MCTDH) ∼ TD-CAS-SCF for nuclei • Single Particle Functions (SPF) | φ � : time-dependent, variationally optimised direct-product basis • Configurations | I � : Hartree-Product of SPFs mode combination shifts effort � I A I ( t ) | I ( t ) � single particle functions (SPF), wave function | I ( t ) � ≡ � D i κ ∈ [1 , n κ ] κ =1 | φ κ j κ ( t ) � | Ψ( t ) � tensor size � D i n i , n i ≤ N i 8 / 13

  21. Multi-Configurational Time-Dependent Hartree (MCTDH) ∼ TD-CAS-SCF for nuclei • Single Particle Functions (SPF) | φ � : time-dependent, variationally optimised direct-product basis • Configurations | I � : Hartree-Product of SPFs mode combination shifts effort � I A I ( t ) | I ( t ) � single particle functions (SPF), wave function | I ( t ) � ≡ � D i κ ∈ [1 , n κ ] κ =1 | φ κ j κ ( t ) � | Ψ( t ) � tensor size � D i n i , n i ≤ N i • Mode combination: Combine strongly coupled modes to propagate multidimensional SPFs. • Shifts both computational effort and storage requirement 8 / 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend