e x p l a i n i n g m a c h i n e l e a r n i n g d e c i
play

E x p l a i n i n g M a c h i n e L e a r n i - PowerPoint PPT Presentation

E x p l a i n i n g M a c h i n e L e a r n i n g D e c i s i o n s G r g o i r e M o n t a v o n , T U B e r l i n J o i n t w o r k w i t h : W o j c i e c h S a


  1. E x p l a i n i n g M a c h i n e L e a r n i n g D e c i s i o n s G r é g o i r e M o n t a v o n , T U B e r l i n J o i n t w o r k w i t h : W o j c i e c h S a m e k , K l a u s - R o b e r t M ü l l e r , S e b a s t i a n L a p u s c h k i n , A l e x a n d e r B i n d e r 1 8 / 0 9 / 2 0 1 8 I n t l . W o r k s h o p M L & A I , T e l e c o m P a r i s T e c h 1 / 4 5

  2. F r o m M L S u c c e s s e s t o A p p l i c a t i o n s Deep Net outperforms Medical Diagnosis humans in image classification AlphaGo beats Go human champ Autonomous Driving Visual Reasoning Networks (smart grids, etc.) 2 / 4 5

  3. Can we interpret what a ML model has learned? 3 / 4 5

  4. First, we need to define what we want from interpretable ML. 4 / 4 5

  5. U n d e r s t a n d i n g D e e p N e t s : T w o V i e w s Understanding what Understanding how the mechanism the network network relates the input uses to solve a problem or to the output variables. implement a function. 5 / 4 5

  6. interpreting explaining predicted classes individual decisions 6 / 4 5

  7. I n t e r p r e t i n g P r e d i c t e d C l a s s e s “How does a goose typically look like E x a m p l e : according to the neural network?” non-goose goose Image from Symonian’13

  8. E x p l a i n i n g I n d i v i d u a l D e c i s i o n s “Why is a given image classified as a E x a m p l e : sheep?” non-sheep sheep Images from Lapuschkin’16 8 / 4 5

  9. E x a m p l e : A u t o n o m o u s D r i v i n g [ B o j a r s k i ’ 1 7 ] B o j a r s k i e t a l . 2 0 1 7 “ E x p l a i n i n g H o w a D e e p N e u r a l N e t w o r k T r a i n e d w i t h E n d - t o - E n d L e a r n i n g S t e e r s a C a r ” P i l o t N e t I n p u t : D e c i s i o n E x p l a n a t i o n : 9 / 4 5

  10. E x a m p l e : P a s c a l V O C C l a s s i fi c a t i o n [ L a p u s c h k i n ’ 1 6 ] C o m p a r i n g P e r f o r m a n c e o n P a s c a l V O C 2 0 0 7 ( F i s h e r V e c t o r C l a s s i fi e r v s . D e e p N e t p r e t r a i n e d o n I m a g e N e t ) F i s h e r c l a s s i fi e r ( p r e t r a i n e d ) d e e p n e t L a p u s c h k i n e t a l . 2 0 1 6 . A n a l y z i n g C l a s s i fi e r s : F i s h e r V e c t o r s a n d D e e p N e u r a l 1 0 / 4 5 N e t w o r k s

  11. E x a m p l e : P a s c a l V O C C l a s s i fi c a t i o n [ L a p u s c h k i n ’ 1 6 ] L a p u s c h k i n e t a l . 2 0 1 6 . A n a l y z i n g C l a s s i fi e r s : F i s h e r V e c t o r s a n d D e e p N e u r a l 1 1 / 4 5 N e t w o r k s

  12. E x a m p l e : M e d i c a l D i a g n o s i s [ B i n d e r ’ 1 8 ] B i n d e r e t a l . 2 0 1 8 “ T o w a r d s c o m p u t a t i o n a l fl u o r e s c e n c e m i c r o s c o p y : M a c h i n e l e a r n i n g - b a s e d i n t e g r a t e d p r e d i c t i o n o f m o r p h o l o g i c a l a n d m o l e c u l a r t u m o r p r o fi l e s ” A : I n v a s i v e b r e a s t c a n c e r , H & E s t a i n ; B : N o r m a l m a m m a r y g l a n d s a n d fi b r o u s t i s s u e , H & E s t a i n ; C : D i f f u s e c a r c i n o m a i n fi l t r a t e i n fi b r o u s t i s s u e , H e m a t o x y l i n s t a i n 1 2 / 4 5

  13. E x a m p l e : Q u a n t u m C h e m i s t r y [ S c h ü t t ’ 1 7 ] S c h ü t t e t a l . 2 0 1 7 : Q u a n t u m - C h e m i c a l I n s i g h t s f r o m D e e p T e n s o r N e u r a l N e t w o r k s m o l e c u l a r s t r u c t u r e ( e . g . a t o m s p o s i t i o n s ) i n t e r p r e t a b l e i n s i g h t DFT calculation of the stationary Schrödinger Equation P B E 0 , D T N N , P e d r e w ’ 8 6 S c h ü t t ’ 1 7 m o l e c u l a r e l e c t r o n i c p r o p e r t i e s ( e . g . a t o m i z a t i o n e n e r g y ) 1 3 / 4 5

  14. E x a m p l e s o f E x p l a n a t i o n M e t h o d s 1 4 / 4 5

  15. E x p l a i n i n g b y D e c o m p o s i n g I m p o r t a n c e o f a v a r i a b l e i s t h e s h a r e o f t h e f u n c t i o n s c o r e t h a t c a n b e a t t r i b u t e d t o i t . i n p u t D N N D e c o m p o s i t i o n p r o p e r t y : 1 5 / 4 5

  16. E x p l a n i n g L i n e a r M o d e l s A s i m p l e m e t h o d : 1 6 / 4 5

  17. E x p l a n i n g L i n e a r M o d e l s T a y l o r d e c o m p o s i t i o n a p p r o a c h : I n s i g h t : e x p l a n a t i o n d e p e n d s o n t h e r o o t p o i n t . 1 7 / 4 5

  18. E x p l a i n i n g N o n l i n e a r M o d e l s s e c o n d - o r d e r t e r m s a r e h a r d t o i n t e r p r e t a n d c a n b e v e r y l a r g e 1 8 / 4 5

  19. E x p l a i n i n g N o n l i n e a r M o d e l s b y P r o p a g a t i o n L a y e r - W i s e R e l e v a n c e P r o p a g a t i o n ( L R P ) [ B a c h ’ 1 5 ] 1 9 / 4 5

  20. E x p l a i n i n g N o n l i n e a r M o d e l s b y P r o p a g a t i o n Is there an underlying mathematical framework? 2 0 / 4 5

  21. D e e p T a y l o r D e c o m p o s i t i o n ( D T D ) [ M o n t a v o n ’ 1 7 ] Question: Suppose that we have propagated LRP scores (“relevance”) until a given layer. How should it be propagated one layer further? Key idea: Let’s use Taylor expansions for this. 2 1 / 4 5

  22. D T D S t e p 1 : T h e S t r u c t u r e o f R e l e v a n c e O b s e r v a t i o n : R e l e v a n c e a t e a c h l a y e r i s a p r o d u c t o f t h e a c t i v a t i o n a n d a n a p p r o x i m a t e l y c o n s t a n t t e r m . 2 2 / 4 5

  23. D T D S t e p 1 : T h e S t u c t u r e o f R e l e v a n c e 2 3 / 4 5

  24. D T D S t e p 2 : T a y l o r E x p a n s i o n 2 4 / 4 5

  25. D T D S t e p 2 : T a y l o r E x p a n s i o n T a y l o r e x p a n s i o n a t r o o t p o i n t : R e l e v a n c e c a n n o w b e b a c k w a r d p r o p a g a t e d 2 5 / 4 5

  26. D T D S t e p 3 : C h o o s i n g t h e R o o t P o i n t ( D e e p T a y l o r g e n e r i c ) C h o i c e o f r o o t p o i n t 1 . n e a r e s t r o o t ✔ 2 . r e s c a l e d e x c i t a t i o n s (same as LRP - ) α β 1 0 2 6 / 4 5

  27. D T D : C h o o s i n g t h e R o o t P o i n t ( D e e p T a y l o r g e n e r i c ) P i x e l s d o ma i n C h o i c e o f r o o t p o i n t 2 7 / 4 5

  28. D T D : C h o o s i n g t h e R o o t P o i n t ( D e e p T a y l o r g e n e r i c ) E mb e d d i n g : C h o i c e o f r o o t p o i n t i m a g e s o u r c e : T e n s o r fl o w t u t o r i a l 2 8 / 4 5

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend