e x p d x e x p d y 4 a t t 4 a t t
play

e x p [ ] d x ' e x p [ ] d y ' 4 a t ( t ') - PowerPoint PPT Presentation

Uniform rectangular moving heat source: Rectangular heat source of dimension l < x < l and b < y < b i.e. for semi-infinite body moving with constant velocity v from time t = 0 to t = t. Heat intensity I is given by,


  1. • Uniform rectangular moving heat source: Rectangular heat source of dimension –l < x < l and –b < y < b i.e. for semi-infinite body moving with constant velocity v from time t’ = 0 to t’ = t. Heat intensity I is given by, where A = 4*b*l Integrating with the space variables, 2 2 P d t ' z = − d T ( ) t e x p [ ] 3 3 − − 4 4 a t a t ( ( t t ') ') ρ π − 2 4 b l C ( 4 a t ( t ')) l b 2 − − − (( x v t ') x ') ( y y ') 2 � � − − e x p [ ] d x ' e x p [ ] d y ' − − 4 a t ( t ') 4 a t ( t ') − − l b Results can be obtained by numerical integration with respect to time.

  2. Comparison of Gaussian and uniform heat source: for EN 18 steel Results: Results: No Fig. Comparison of width/depth of hardened zone[13] 1 2 3 4 5

  3. Finite difference formulation: • Nodal points • Nodal network • Regular or irregular • Types - coarser - fine ……Temperature at time interval � t

  4. Finite Element Models 02/08/10

  5. Thermal Modeling – Heat generated in workpiece due to cutting is small compared to the heat generated by the laser – A scaled model (5mm x 2mm x 2mm) is used – The Gaussian distribution of laser power intensity P x,y is given by: � − � 2 2 P 2 r � � � � tot tot = = − P P exp exp � � � � x , y 2 2 π � � r r b b – The average absorptivity of incident irradiation is determined experimentally – Temperature dependent thermophysical properties are used

  6. Mathematical Formulation ������������������������������������������������������� � � � � � � ∂ ∂ ∂ ∂ ∂ ∂ . ∂ ∂ T T T T T � � � � � � + + + = ρ + ρ k k k Q c c V � � p p � � � � ∂ ∂ ∂ � ∂ � ∂ ∂ ∂ ∂ x x y y z z t x ������������������ T(x, y, z, 0 ) = T 0 0 ����������������������������������������� ∂ T 4 4 − + − + σε − = k q h ( T T ) ( T T ) 0 0 0 ∂ n ∂ T − + − 0 = k q h ( T T ) 0 e ∂ n − 3 1 . 61 ���������������� !!!" ����� , = × ε h 2 . 4 10 T e

  7. Mathematical Formulation • Average measured temperatures are used for boundary conditions on remaining external surfaces • Half symmetry used at bottom face = = q q 0 0 bottom bottom

  8. Case Study- Thermal Model 1 ELEMENTS MAT NUM Natural B.C. on front face JUL 19 2006 14:52:01 Y X Y Z X Z Symmetry B.C. on bottom face • Mapped dense mesh (25 µ m x 12.5 µ m x 20 µ m) • An 8 noded 3-D thermal element (Solid70) is used • Gaussian distribution of heat flux applied to a 5x5 element matrix which sweeps the mesh on the front face

  9. Temperature Simulation 1 1 NODAL SOLUTION NODAL SOLUTION JUL 20 2006 JUL 20 2006 STEP=41 STEP=41 10:37:08 10:37:08 SUB =10 SUB =10 TIME=6 TIME=6 TEMP (AVG) TEMP (AVG) RSYS=0 RSYS=0 SMN =150 SMN =150 SMX =1876 SMX =1876 Y Y X X MX MX (Laser scan direction) (Laser scan direction) 150 150 533.653 533.653 917.307 917.307 1301 1301 1685 1685 341.827 341.827 725.48 725.48 1109 1109 1493 1493 1876 1876 #�$���������$%�������������������������&� ��������� '�(�������%������ '� $$)$���������%�������� '� µ $��%�����*�"

  10. Laser Cutting Laser Cutting ME 677: Laser Material Processing Instructor: Ramesh Singh 1

  11. Outline • Materials Processing Parameters • Process Description • Mechanisms of Laser Cutting ME 677: Laser Material Processing Instructor: Ramesh Singh 2

  12. Effect of Power Density • Power density is the key process driver • Power Density (Intensity)= P/ π r 2 ME 677: Laser Material Processing Instructor: Ramesh Singh 3

  13. Process Variables for Material Processing • The other important process variables: ME 677: Laser Material Processing Instructor: Ramesh Singh 4

  14. Interaction Time and Empirical Process Chart • Interaction time, τ = 2 r/v where r = beam radius and v = velocity ME 677: Laser Material Processing Instructor: Ramesh Singh 5

  15. Structural Steel ME 677: Laser Material Processing Instructor: Ramesh Singh 6

  16. Cutting • Laser cutting is able to cut faster and with a higher quality then competing processes: – Punch, plasma, abrasive waterjet, ultrasonic, oxyflame, sawing and milling oxyflame, sawing and milling • Can be automated • 80% industrial lasers in Japan are used for metal cutting ME 677: Laser Material Processing Instructor: Ramesh Singh 7

  17. ME 677: Laser Material Processing Instructor: Ramesh Singh 8

  18. Typical Cutting Setup ME 677: Laser Material Processing Instructor: Ramesh Singh 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend