dynamics of non densely defined stochastic evolution
play

Dynamics of Non-densely Defined Stochastic Evolution Equations - PowerPoint PPT Presentation

Motivation Random evolution equations Random attractors Dynamics of Non-densely Defined Stochastic Evolution Equations Alexandra Neamt u Institute of Mathematics Friedrich-Schiller-University Jena Bielefeld, 6th November 2015 Alexandra


  1. Motivation Random evolution equations Random attractors Dynamics of Non-densely Defined Stochastic Evolution Equations Alexandra Neamt ¸u Institute of Mathematics Friedrich-Schiller-University Jena Bielefeld, 6th November 2015 Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  2. Motivation Random evolution equations Random attractors Motivation 1 Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  3. Motivation Random evolution equations Random attractors Motivation 1 Random evolution equations 2 Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  4. Motivation Random evolution equations Random attractors Motivation 1 Random evolution equations 2 Random attractors 3 Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  5. Motivation Random evolution equations Random attractors SDE : � dU ( t ) = ( AU ( t ) + F ( U ( t ))) dt + dW ( t ) , t ∈ [0 , T ] (1.1) U (0) = U 0 . RDE : � dv ( t ) = Av ( t ) + F ( ω, v ( t )) , t ∈ [0 , T ] dt (1.2) v (0) = v 0 . Dynamics 1 random attractors; 2 invariant manifolds. Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  6. Motivation Random evolution equations Random attractors SDE : � dU ( t ) = ( AU ( t ) + F ( U ( t ))) dt + dW ( t ) , t ∈ [0 , T ] (1.1) U (0) = U 0 . RDE : � dv ( t ) = Av ( t ) + F ( ω, v ( t )) , t ∈ [0 , T ] dt (1.2) v (0) = v 0 . Dynamics 1 random attractors; 2 invariant manifolds. Here: A is a non-densely defined linear operator: NO C 0 -semigroup! Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  7. Motivation Random evolution equations Random attractors Example: Deterministic case Age-structured models in population dynamics [P. Magal and S. Ruan (2009)] ∂ t v ( t , a ) + ∂ a v ( t , a ) = − µ v ( t , a ) , t > 0 , a > 0 ,  � ∞  �  � v ( t , 0) = f β ( a ) v ( t , a ) da 0   v (0 , · ) = v 0 ( · ) ∈ L 1 (0 , ∞ ) . Ricker type birth function: f ( x ) = xe − bx , x ∈ R and b > 0. Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  8. Motivation Random evolution equations Random attractors Example: Deterministic case Age-structured models in population dynamics [P. Magal and S. Ruan (2009)] ∂ t v ( t , a ) + ∂ a v ( t , a ) = − µ v ( t , a ) , t > 0 , a > 0 ,  � ∞  �  � v ( t , 0) = f β ( a ) v ( t , a ) da 0   v (0 , · ) = v 0 ( · ) ∈ L 1 (0 , ∞ ) . Ricker type birth function: f ( x ) = xe − bx , x ∈ R and b > 0. 0 � � Set X = R × L 1 (0 , ∞ ) and u ( t , · ) = . v ( t , · ) � 0 − v (0) � � � with D ( A ) = { 0 } × W 1 , 1 (0 , ∞ ). A = − v ′ − µ v v   � ∞ � 0 � � �  f β ( a ) v ( a ) da F : { 0 } × L 1 (0 , ∞ ) → X , F  . = v 0 0 Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  9. Motivation Random evolution equations Random attractors Abstract Cauchy-Problem One obtains du = Au + F ( u ) , u (0) = u 0 ∈ D ( A ) . (1.3) Note that D ( A ) = { 0 } × L 1 (0 , ∞ ) � = X . Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  10. Motivation Random evolution equations Random attractors Abstract Cauchy-Problem One obtains du = Au + F ( u ) , u (0) = u 0 ∈ D ( A ) . (1.3) Note that D ( A ) = { 0 } × L 1 (0 , ∞ ) � = X . G. Da Prato and E. Sinestrari, Differential operators with non-dense domain , Ann. Scuola. Norm. Sup. Pisa Cl. Sci 14 (1987), 285-344; Z. Liu, P. Magal and S. Ruan, Hopf bifurcation for nondensely defined Cauchy problems , Z. Angew. Math. Phys. 62 (2011), 191-222; P. Magal, S. Ruan, On semilinear Cauchy problems with nondense domain , Adv. Diff. Eq. 14 (2009), 1041-1084; H. R. Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problems , J. Math. Anal. Appl. 152 (1990), 416-447. Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  11. Motivation Random evolution equations Random attractors Preliminaries Definition Let θ : R × Ω → Ω be a family of P -preserving transformations having following properties: 1 the mapping ( t , ω ) �→ θ t ω is ( B ( R ) ⊗ F , F )-measurable; 2 θ 0 = Id Ω ; 3 θ t + s = θ t ◦ θ s for all t , s , ∈ R . Then the quadrupel (Ω , F , P , ( θ t ) t ∈ R ) is called a metric dynamical system. Definition A linear random dynamical system is a mapping ϕ : R + × Ω × X → X , ( t , ω, x ) �→ ϕ ( t , ω, x ) , ϕ is ( B ( R + ) ⊗ F ⊗ B ( X ), B ( X ))-measurable; 1 2 ϕ (0 , ω, · ) = Id X for all ω ∈ Ω; 3 the cocycle property: ϕ ( t + s , ω, x ) = ϕ ( t , θ s ω, ϕ ( s , ω, x )) , for all x ∈ X , s , t ∈ R + , ω ∈ Ω; for each ω ∈ Ω and t ∈ R + , [ X ∋ x �→ ϕ ( t , ω, x ) ∈ X ] ∈ L ( X ). 4 Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  12. Motivation Random evolution equations Random attractors RDE Let X be a separable Banach space and X 0 := D ( A ); u ′ ( t ) = Au ( t ) + F ( θ t ω, u ( t )) , u (0) = u 0 ∈ X 0 . (2.1) Definition A family of linear bounded operators ( S ( t )) t ≥ 0 is called an integrated semigroup if S (0) = 0; 1 t �→ S ( t ) is strongly continuous; 2 s � S ( s ) S ( t ) = ( S ( r + t ) − S ( r )) dr , t , s ≥ 0. 3 0 Examples: t � S ( t ) = T ( s ) ds where ( T ( t )) t ≥ 0 is a C 0 -semigroup; 1 0 Au = i ∆ u generates an integrated semigroup in L p ( R n ) for p � = 2. 2 Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  13. Motivation Random evolution equations Random attractors Definition A continuous map u ∈ C ([0 , T ]; X ) is an integrated solution of (2.1) if t � u ( s ) ds ∈ D ( A ) , t ∈ [0 , T ]; 1 0 t t � � u ( t ) = u 0 + A u ( s ) ds + F ( θ s ω, u ( s , ω, u 0 )) ds , t ∈ [0 , T ]. 2 0 0 Assumptions : M � � ( λ I − A ) − k � (a) L ( X 0 ) ≤ ( λ − ω A ) k , for all λ > ω A and all k ≥ 1; � � � λ →∞ ( λ I − A ) − 1 x = 0 , for all x ∈ X . (b) lim A 0 = A on D ( A 0 ) = { x ∈ D ( A ) : Ax ∈ X 0 } generates a C 0 -semigroup ( T ( t )) t ≥ 0 on X 0 ; A generates an integrated semigroup ( S ( t )) t ≥ 0 on X . Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  14. Motivation Random evolution equations Random attractors Variation of constants ( λ I − A ) − 1 : X → X 0 and λ →∞ λ ( λ I − A ) − 1 x = x , for x ∈ X 0 . lim Equation on X 0 : ( λ I − A ) − 1 du ( t ) = A 0 ( λ I − A ) − 1 u ( t ) dt + ( λ I − A ) − 1 F ( θ t ω, u ( t )) dt , t � ( λ I − A ) − 1 u ( t ) = T ( t )( λ I − A ) − 1 u 0 + T ( t − s )( λ I − A ) − 1 F ( θ s ω, u ( s )) ds . 0 Theorem Equation (2.1) possesses a unique global integrated solution t � T ( t − s ) λ ( λ I − A ) − 1 F ( θ s ω, u ( s , ω, u 0 )) ds . u ( t , ω, u 0 ) = T ( t ) u 0 + lim λ →∞ 0 (2.2) Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  15. Motivation Random evolution equations Random attractors Special case Consider du ( t ) = ( Au ( t ) + f ( u ( t ))) dt + σ dW ( t ) , u (0) = u 0 ∈ D ( A ) , σ ∈ D ( A ) . (2.3) 0 � e s ω ( s ) ds Ornstein-Uhlenbeck process: dz = zdt + dW , z ( ω ) = − −∞ 0 e s ω ( t + s ) ds + ω ( t ) , t ∈ R . � ( t , ω ) �→ z ( θ t ω ): z ( θ t ω ) = − −∞ Transformation: x ( t ) = u ( t ) − z ( θ t ω ). x ′ ( t ) = Ax ( t ) + F ( θ t ω, x ( t )) , Equation (2.3) becomes: F ( θ t ω, x ( t )) = f ( x ( t ) + z ( θ t ω )) + Az ( θ t ω ) + z ( θ t ω ) . Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

  16. Motivation Random evolution equations Random attractors The parabolic case Assumptions: A 0 generates an analytic semigroup, B ∈ γ ( H ; X 0 ) and W is an H -cylindrical Wiener process. dU ( t ) = ( AU ( t ) + F ( U ( t ))) dt + BdW ( t ) v ( t ) = U ( t ) − Z ( θ t ω ) dv ( t ) = Av ( t ) dt + F ( v ( t ) + Z ( θ t ω )) dt . Infinite dimensional noise: L p ( R )-valued Brownian motion: formally ∞ ∞ � � W ( t ) = g k ( x ) w k ( t ) = W H ( t ) e k Be k . k =1 k =1 ( g k ) k ≥ 1 ∈ L p ( R , l 2 ) define Bh := � [ h , e k ] g k , h ∈ l 2 and ( e k ) k ≥ 1 ONB in l 2 . k ≥ 1 2 p � p � � � � � � � � � E γ k Be k L p ( R ) � p E γ k Be k L p ( R ) = E γ k g k ( x ) dx � � � � � � � � � � � � k ≥ 1 k ≥ 1 k ≥ 1 R p   2 � � | g k ( x ) | 2 ≤ dx < ∞ .  k ≥ 1 R Alexandra Neamt ¸u Dynamics of Non-densely Defined Stochastic Equations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend