dynamic predictions in a joint model of two longitudinal
play

Dynamic Predictions in a Joint Model of Two Longitudinal Outcomes - PowerPoint PPT Presentation

Dynamic Predictions in a Joint Model of Two Longitudinal Outcomes and Competing Risk Data. An Application in Heart Valve Data. Eleni-Rosalina Andrinopoulou Department of Biostatistics and CardioThoracic surgery, Erasmus Medical Center


  1. Dynamic Predictions in a Joint Model of Two Longitudinal Outcomes and Competing Risk Data. An Application in Heart Valve Data. Eleni-Rosalina Andrinopoulou Department of Biostatistics and CardioThoracic surgery, Erasmus Medical Center e.andrinopoulou@erasmusmc.nl BAYES May 21-23th, 2013

  2. Heart Valve Data • 286 patients who received human tissue valve in aortic position in Erasmus University Medical Center (Department of Cardio-Thoracic Surgery) ◃ Patients were 16 years and older ◃ Echo examinations scheduled at 6 months and 1 year postoperatively and biennially thereafter ◃ Two longitudinal responses: Aortic Gradient (continuous) and Aortic Regurgitation (ordinal) ◃ Time-to-event response: time to death/reoperation (competing risks setting) BAYES May 21-23th, 2013 1

  3. Heart Valve Data - (cont’d) • Aortic gradient and aortic regurgitation are measurements of the valve function ⇓ expecting biologically interrelationship. • Both events (reoperation and death) are highly associated with the disease condition of the patient and correlated to each other. BAYES May 21-23th, 2013 2

  4. Statistical Models - Heart Valve data Joint model to the Heart Valve data: • Linear mixed-effects model for the longitudinal continuous outcome. • Mixed-effects continuation ratio model for the longitudinal ordinal outcome. • Cause-specific hazard model for the competing risk failure time data. BAYES May 21-23th, 2013 3

  5. Statistical Models - Heart Valve data (cont’d) Let Y 1 i and Y 2 i represent the repeated measurements of AG and AR for the i -th patient, i = 1 , . . . , n . • Linear mixed-effects model: Y 1 i = X 1 i β 1 + Z 1 i b 1 i + ϵ i , ϵ i ∼ (0 , V ) ◃ X 1 i β 1 denotes the fixed part ◃ Z 1 i b 1 i denotes the random part BAYES May 21-23th, 2013 4

  6. Statistical Models - Heart Valve data (cont’d) • Mixed-effects continuation ratio model: exp ( θ j + X 2 i β 2 + Z 2 i b 2 i ) π j = P ( Y 2 i = j | Y 2 i ≤ j ) = 1 + exp ( θ j + X 2 i β 2 + Z 2 i b 2 i ) , where j represents the category of the ordinal response ◃ X 2 i β 2 denotes the fixed part ◃ Z 2 i b 2 i denotes the random part BAYES May 21-23th, 2013 5

  7. Statistical Models - Heart Valve data (cont’d) • To account for the correlation between the two longitudinal outcomes we assume multivariate random effects (( 0 )) ( b 1 i ) ) ( Σ b 1 Σ b 12 ∼ N , D = b 2 i 0 Σ b 12 Σ b 2 BAYES May 21-23th, 2013 6

  8. Statistical Models - Heart Valve data (cont’d) Let T i denote the observed failure time for the i -th patient and δ i = 0 , 1 , 2 the event indicator. • Proportional hazard model:  i γ d + ( ˜ β 1 + b 1 i ) ⊤ α 1 d + ( ˜ h d i ( t ) = h d 0 ( t ) exp { w ⊤ β 2 + b 2 i ) ⊤ α 2 d } ,            i γ r + ( ˜ β 1 + b 1 i ) ⊤ α 1 r + ( ˜ h r i ( t ) = h r 0 ( t ) exp { w ⊤ β 2 + b 2 i ) ⊤ α 2 r } ,    where α ⊤ 1 d , α ⊤ 2 d , α ⊤ 1 r , α ⊤ 2 r are the coefficient that link the longitudinal and survival part. Specifically, α ⊤ 1 are the coefficients of the continuous longitudinal outcome and α ⊤ 2 are the coefficients of the ordinal longitudinal outcomes. BAYES May 21-23th, 2013 7

  9. Statistical Models - Heart Valve data (cont’d) • Assumption : full conditional independence, given the random effects P ( T i , δ i , Y 1 i , Y ∗ 2 i | b 1 i , b 2 i ; θ ) = P ( T i , δ i | b 1 i , b 2 i ; θ ) P ( Y 1 i | b 1 i , b 2 i ; θ ) P ( Y ∗ 2 i | b 1 i , b 2 i ; θ ) ∏ P ( Y 1 i | b 1 i ; θ ) = P { Y 1 i ( t ij ) | b 1 i ; θ } j ∏ P ( Y ∗ P { Y ∗ 2 i | b 1 i ; θ ) = 2 i ( t ij ) | b 2 i ; θ } j The random effects b 1 i and b 2 i underlie both the longitudinal and survival processes. BAYES May 21-23th, 2013 8

  10. Statistical Models - Heart Valve data (cont’d) Models for the Heart Valve data • continuous longitudinal submodel ◃ Fixed part: intercept, B-splines for time, age and gender ◃ Random part: B-splines for time • ordinal longitudinal submodel ◃ Fixed part: intercept, time, age and gender ◃ Random part: random intercept • survival submodel ◃ age ◃ piecewise constant baseline hazard BAYES May 21-23th, 2013 9

  11. Bayesian estimation - Heart Valve data • Bayesian formulation for the proposed joint model • Posterior inferences using a Markov chain Monte Carlo (MCMC) algorithm ◃ The posterior distribution is P ( θ | Y 1 i , Y ∗ 2 i , T i , δ i ) ∝ P ( T i , δ i | b 1 i , b 2 i , θ s ) P ( Y 1 i | b 1 i , θ Y 1 ) P ( Y ∗ 2 i | b 2 i , θ Y ∗ 2 ) P ( b 1 i | θ Y 1 ) P ( b 2 i | θ Y ∗ 2 ) P ( θ Y 1 ) P ( θ Y ∗ 2 ) P ( θ s ) BAYES May 21-23th, 2013 10

  12. Bayesian estimation - Heart Valve data (cont’d) • The likelihood for the survival part is P ( T i , δ i | b 1 i , b 2 i ; θ s ) i γ k + ( ˜ β 1 + b 1 i ) ⊤ α 1 k + ( ˜ = [ h 0 k ( T i ) exp { w ⊤ β 2 + b 2 i ) ⊤ α 2 k } ] I ( δ i = k ) m { i γ d + ( ˜ β 1 + b 1 i ) ⊤ α 1 d + ( ˜ ∑ [ h 0 d ( T i ) exp { w ⊤ β 2 + b 2 i ) ⊤ α 2 d } × exp − q =1 } i γ r + ( ˜ β 1 + b 1 i ) ⊤ α 1 r + ( ˜ + h 0 r ( T i ) exp { w ⊤ β 2 + b 2 i ) ⊤ α 2 r } ] T iq BAYES May 21-23th, 2013 11

  13. Bayesian estimation - Heart Valve data (cont’d) • priors ◃ β 1 , β 2 , b 1 , b 2 , α 1 , α 2 ⇒ normal prior distributions ◃ D − 1 ⇒ wishart prior distribution ◃ τ , h d 0 ( t ) , h r 0 ( t ) ⇒ gamma prior distributions • 110000 iterations with 20000 burn in and 20 thinning BAYES May 21-23th, 2013 12

  14. Dynamic predictions - Heart Valve data Increased interest towards dynamic predictions Focus on the prediction of • cumulative incidence function • longitudinal outcomes Useful from the clinical point of view BAYES May 21-23th, 2013 13

  15. Dynamic predictions - Heart Valve data (cont’d) • New patient l that has provided us ˜ ˜ Y 1 l ( t ) = { Y 1 l ( s ) , 0 ≤ s < t } and Y 2 l ( t ) = { Y 2 l ( s ) , 0 ≤ s < t } • The interest lies on lk > t, ˜ Y 1 l ( t ) , ˜ π lk ( u, t ; θ ) = P ( T ∗ lk < u | ∪ K k =1 T ∗ Y 2 l ( t ) , D n ; θ ) , where u > t and D n denotes the sample on which the joint model was fitted BAYES May 21-23th, 2013 14

  16. Dynamic predictions - Heart Valve data (cont’d) • Conditional probabilities π lk ( u, t ; θ ) = ∫ lk > t, ˜ Y 1 l ( t ) , ˜ lk > t, ˜ Y 1 l ( t ) , ˜ P ( T ∗ lk < u | ∪ K k =1 T ∗ Y 2 l ( t ); θ ) × p ( b l | ∪ K k =1 T ∗ Y 2 l ( t ); θ ) db l BAYES May 21-23th, 2013 15

  17. Dynamic predictions - Heart Valve data (cont’d) • Conditional Independence Assumption π lk ( u, t ; θ ) = ∫ lk > t, ˜ Y 1 l ( t ) , ˜ P ( T ∗ lk < u | ∪ K k =1 T ∗ lk > t ; θ ) × p ( b l | ∪ K k =1 T ∗ Y 2 l ( t ); θ ) db l BAYES May 21-23th, 2013 16

  18. Dynamic predictions - Heart Valve data (cont’d) • Conditional Independence Assumption π lk ( u, t ; θ ) = ∫ CIF ( u, t, b l ; θ ) lk > t, ˜ Y 1 l ( t ) , ˜ × p ( b l | ∪ K k =1 T ∗ Y 2 l ( t ); θ ) db l S ( t, b l ; θ ) BAYES May 21-23th, 2013 17

  19. Dynamic predictions - Heart Valve data (cont’d) • Conditional Independence Assumption π lk ( u, t ; θ ) = ∫ CIF ( u, t, b l ; θ ) lk > t, ˜ Y 1 l ( t ) , ˜ × p ( b l | ∪ K k =1 T ∗ Y 2 l ( t ); θ ) db l S ( t, b l ; θ ) • Estimation of these probabilities is based on a Monte Carlo scheme ∫ π lk ( u, t ; θ ) p ( θ | D n ) dθ BAYES May 21-23th, 2013 17

  20. Dynamic predictions - Heart Valve data (cont’d) • We estimate the conditional probabilities using a MCMC algorithm. Specifically, ◃ Randomly select θ ∗ from the MCMC of the joint model l > t, ˜ Y 1 l ( t ) , ˜ ◃ Draw b ∗ l ∼ { b l |∪ K k =1 T ∗ Y 2 l ( t ) , θ ∗ } ◃ Compute π lk ( u, t, b ∗ l ; θ ∗ ) = CIF ( u, t, b ∗ l ; θ ∗ ) /S ( t, b ∗ l ; θ ∗ ) • Repeat for a patient N times • Then, estimation of the conditional probabilities: mean/median { π lk ( u, t, b ∗ l ; θ ∗ ) } BAYES May 21-23th, 2013 18

  21. Dynamic predictions - Heart Valve data (cont’d) Patient 80 Aortic Gradient (mmHg) 10 8 6 4 2 0 4 Aortic Regurgitation 3 2 1 0 2 4 6 8 10 12 Time (years) BAYES May 21-23th, 2013 19

  22. Dynamic predictions - Heart Valve data (cont’d) 12 Death 1.0 Reoperation Aortic Gradient (mmHg) 10 8 0.8 6 4 Conditional CIF 0.6 2 0 6 0.4 Aortic Regurgitation 5 4 3 0.2 2 1 0.0 0 0 5 10 15 20 0 5 10 15 20 Follow−up time Time (years) BAYES May 21-23th, 2013 20

  23. Dynamic predictions - Heart Valve data (cont’d) 12 Death 1.0 Reoperation Aortic Gradient (mmHg) 10 8 0.8 6 4 Conditional CIF 0.6 2 0 6 0.4 Aortic Regurgitation 5 4 3 0.2 2 1 0.0 0 0 5 10 15 20 0 5 10 15 20 Follow−up time Time (years) BAYES May 21-23th, 2013 20

  24. Dynamic predictions - Heart Valve data (cont’d) 12 Death 1.0 Reoperation Aortic Gradient (mmHg) 10 8 0.8 6 4 Conditional CIF 0.6 2 0 6 0.4 Aortic Regurgitation 5 4 3 0.2 2 1 0.0 0 0 5 10 15 20 0 5 10 15 20 Follow−up time Time (years) BAYES May 21-23th, 2013 20

  25. Dynamic predictions - Heart Valve data (cont’d) 12 Death 1.0 Reoperation Aortic Gradient (mmHg) 10 8 0.8 6 4 Conditional CIF 0.6 2 0 6 0.4 Aortic Regurgitation 5 4 3 0.2 2 1 0.0 0 0 5 10 15 20 0 5 10 15 20 Follow−up time Time (years) BAYES May 21-23th, 2013 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend