dynamic formulations of optimal transportation and
play

Dynamic formulations of Optimal Transportation and variational MFGs - PowerPoint PPT Presentation

Dynamic formulations of Optimal Transportation and variational MFGs Jean-David Benamou EPC MOKAPLAN CEMRACS-CIRM July 2017 Summary 2 / 36 1. Basic Introduction to Dynamic OT 2. Time Discretization and MultiMarginal OT 3. Entropic


  1. Dynamic formulations of Optimal Transportation and variational MFGs Jean-David Benamou EPC MOKAPLAN CEMRACS-CIRM July 2017

  2. Summary 2 / 36 1. Basic Introduction to Dynamic OT 2. Time Discretization and MultiMarginal OT 3. Entropic Regularization and IPFP/Sinkhorn 4. Scaling Algorithms 5. Schrödinger bridge and system 6. Application to Stochastic VMFGs

  3. Modern setting of Monge Problem (1781) 3 / 36 ■ Source/Target Data : d ✚ i ✭ x ✮✭❂ ✚ i ✭ x ✮ dx ✮ ❀ i ❂ 0 ❀ 1 ❩ ❩ ✚ 1 ✭ x ✮ dx ❂ 1, D ✚ ❘ n ✚ i ✕ 0, ✚ 0 ✭ x ✮ dx ❂ D D ■ Measure preserving Transport Maps : ▼ ❂ ❢ T ✿ D ✦ D ❀ T ★ ✚ 0 ❂ ✚ 1 ❣ ✽ B ✚ D T ★ ✚ 0 ✭ B ✮ ❂ ✚ 0 ✭ T � 1 ✭ B ✮✮ det ✭ DT ✮ ✚ 1 ✭ T ✭ x ✮✮ ❂ ✚ 0 ✭ x ✮

  4. Modern setting of Monge Problem (1781) 4 / 36 ❩ ■ Cost Function : ■ ✭ T ✮ ❂ c ✭ x ❀ T ✭ x ✮✮ ✚ 0 ✭ x ✮ dx D ■ Monge Problem : (MP) inf T ✷▼ ■ ✭ T ✮ p ❦ y � x ❦ p (Monge ✦ p ❂ 1). ■ Costs : typically c ✭ x ❀ y ✮ ❂ 1 ■ Th. Brenier (1991) ✭ p ❂ 2 ✮ : ✾ ✦ r ✬ , ✬ convex such that ■ ✭ r ✬ ✭ x ✮✮ ❂ min T ✷▼ ■ ✭ T ✮ ■ Measure preserving property yields : det ✭ D 2 ✬ ✮ ✚ 1 ✭ r ✬ ✮ ❂ ✚ 0 ❀ ✭ MABV 2 ✮ r ✬ ✭ X 0 ✮ ✚ X 1 ■ Extensive Sobolev regularity theory develloped since by Cafarelli and Ambrosio schools ... O(N) Numerical methods : Monotone FD scheme B. Froese Oberman (2014) B. Collino Mirebeau (2016) and B. Duval (2017) and Semi-Discrete approaches Mérigot (2011) Lévy (2015).

  5. Adding the dynamics 5 / 36 ■ Displacement Interpolation - McCann (1997). Def : x ✼✦ ✂✭ t ❀ x ✮ ❂ x ✰ t ✭ r ✬ ✭ x ✮ � x ✮ ❀ t ✷ ❪ 0 ❀ 1 ❬ ✚ ✄ ✭ t ❀ ✿ ✮ ❂ ✭✂✭ t ❀ ✿ ✮✮ ★ ✚ 0 ✚ 0 ✭ x ✮ ( t ✼✦ ✚ ✄ ✭ t ❀ ✂✭ t ❀ x ✮✮ ❂ det ✭ D x ✂✭ t ❀ x ✮✮ ) ■ for all t , ✂✭ t ❀ ✿ ✮ solves (MP) from ✚ 0 to ✚ ✄ ✭ t ❀ ✿ ✮ . ♣ ■ W 2 ✭ ✚ 0 ❀ ✚ ✄ ✭ t ❀ ✿ ✮✮ ❂ ■ ✭✂✭ t ❀ ✿ ✮✮ is a geodesic distance on P ✭ D ✮ .

  6. 6 / 36

  7. The CFD Formulation 7 / 36 ■ Particles move in straigth line at constant speed ❴ def. ❂ v ✄ ✭ t ❀ ✂✭ t ❀ x 0 ✮✮ ✂✭ t ❀ x 0 ✮ ❂ ✭ r ✬ ✭ x 0 ✮ � x 0 ✮ ■ B. Brenier (2000) : ✭ ✚ ✄ ❀ v ✄ ✮ is the unique minimum of ❩ 1 1 ❩ 2 ✚ ✭ t ❀ x ✮ ❦ v ✭ t ❀ x ✮ ❦ 2 dx dt inf ✭ ✚❀ v ✮ satisfies ✭ CE ✮ 0 D ✭ CE ✮ ❅ t ✚ ✰ div ✭ ✚ v ✮ ❂ 0 ❀ ❅ ✗ v ❂ 0 on ❅ D ❀ ✚ ✭ i ❀ ✿ ✮ ❂ ✚ i ✭ ✿ ✮ def. ■ This is a non-smooth convex relaxation (under ✭ ✚❀ v ✮ ✦ ✭ ✚❀ ✛ ❂ ✚ v ✮ ) proximal spliting methods achieve O ✭ N 3 ✮ heuristically. ■ A variational deterministic MFG - Lions Lasry (2007) : (CE) and 2 ❦r ✥ ❦ 2 ❂ 0 ❅ t ✥ ✰ 1 v ❂ grad ✥ and ✭ HJ ✮ see B. Carlier (2015).

  8. Kantorovich Relaxation (1942) 8 / 36 ■ Transport Plans : ✆✭ ✚ 0 ❀ ✚ 1 ✮ ❂ ❢ ✌ ✷ P ✭ D 0 ✂ D 1 ✮ ❀ P D i ★ ✌ ❂ ✚ i ❀ i ❂ 0 ❀ 1 ❣ ✽ B 0 ✚ D 0 P D 0 ★ ✌ ✭ B 0 ✮ ❂ ✌ ✭ B 0 ❀ D 1 ✮ ✌ ✭ B 0 ❀ D 1 ✮ ❂ ✚ 0 ✭ B 0 ✮ ■ ✆✭ ✚ 0 ❀ ✚ 1 ✮ is non empty : ✚ 0 ✡ ✚ 1 ✭ x 0 ❀ x 1 ✮ ❂ ✚ 0 ✭ x 0 ✮ ✚ 1 ✭ x 1 ✮

  9. Kantorovich Relaxation (1942) 9 / 36 Deterministic Transport plan : def. ✌ T ❂ ✭ Id ❀ T ✮ ★ ✚ 0 ✌ T ✭ B 0 ❀ B 1 ✮ ❂ ✚ 0 ✭ ❢ x ✷ B 0 ❀ s ✿ t ✿ T ✭ x ✮ ✷ B 1 ❣ ✮ T ✷ ▼ ✱ ✌ T ✷ ✆✭ ✚ 0 ❀ ✚ 1 ✮ ❩ ■ ✌ r ✬ solves ✭ MK ✮ inf c ✭ x 0 ❀ x 1 ✮ d ✌ ✭ x 0 ❀ x 1 ✮ ✌ ✷ ✆✭ ✚ 0 ❀✚ 1 ✮ D 0 ✂ D 1 ■ Linear program but N 2 unknowns Simplex or Interior point methods stuck to N ✬ 100.

  10. Dynamic Kantorovich relaxation 10 / 36 ■ Defs : ✡✭ D ✮ ❂ C ✭❬ 0 ❀ 1 ❪❀ D ✮ the set of abs. cont. path ✦ ✿ t ✷ ❬ 0 ❀ 1 ❪ ✼✦ ✦ ✭ t ✮ ✷ D . Q ✷ P ✭✡✭ D ✮✮ a probability measure on ✡✭ D ✮ . e t ✿ ✡✭ D ✮ ✼✦ D the t -evaluation function - e t ✭ ✦ ✮ ❂ ✦ ✭ t ✮ . ✽ B ✚ D ✭ e t ✮ ★ Q ✭ B ✮ ❂ Q ✭ ❢ ✦ ✷ ✡✭ D ✮ ❀ ✦ ✭ t ✮ ✷ B ❣ ✮

  11. Dynamic Kantorovich relaxation 11 / 36 ■ Defs : ✡✭ D ✮ ❂ C ✭❬ 0 ❀ 1 ❪❀ D ✮ the set of abs. cont. path ✦ ✿ t ✷ ❬ 0 ❀ 1 ❪ ✼✦ ✦ ✭ t ✮ ✷ D . Q ✷ P ✭✡✭ D ✮✮ a probability measure on ✡✭ D ✮ . e t ✿ ✡✭ D ✮ ✼✦ D the t -evaluation function - e t ✭ ✦ ✮ ❂ ✦ ✭ t ✮ . ✽ B ✚ D ✭ e 1 ✮ ★ Q ✭ B ✮ ❂ ✚ 1 ✭ B ✮

  12. Dynamic Kantorovich relaxation 12 / 36 ❩ 1 ❩ ✦ ✭ t ✮ ❦ 2 dt dQ ✭ ✦ ✮ ✭ DMK ✮ inf ❦ ❴ ❢ Q ✷P ✭✡✭ D ✮✮ ❀ ✭ e i ✮ ★ Q ❂ ✚ i ❀ i ❂ 0 ❀ 1 ❣ ✡✭ D ✮ 0 ■ ✟ ✂ ✿ D ✦ ✡✭ D ✮ , ✟ ✂ ✭ x 0 ✮ ❂ ✂✭ ✿❀ x 0 ✮ . ■ The solution Q ✄ ❂ ✭✟ ✂ ✮ ★ ✚ 0 is deterministic. ✽ O ✚ ✡✭ D ✮ ❀ Q ✄ ✭ O ✮ ❂ ✚ 0 ✭ ❢ x 0 ✷ D 0 ❀ s ✿ t ✿ ✂✭ x 0 ❀ ✿ ✮ ✷ O ❣ ✮ ■ ✚ ✭ t ❀ ✿ ✮ ❂ ✭ e t ✮ ★ Q ✄ is the CFD geodesic. Analysis by Ambrosio school, see Santambrogio book (2015) ■ P ✭✡✭ D ✮✮ is a BIG space : next section present an efficient numerical method.

  13. Summary 13 / 36 1. Basic Introduction to Dynamic OT 2. Time Discretization and MultiMarginal OT 3. Entropic Regularization and IPFP/Sinkhorn 4. Scaling Algorithms 5. Schrödinger bridge and system 6. Application to Stochastic VMFGs

  14. Time Discretization 14 / 36 1 ■ Discretize time : Set dt ❂ M t i ❂ i dt ❀ i ❂ 0 ✿✿ M ■ Restrict to piecewise linear path ✦ dt ❂ ❢ x 0 ❀ x 1 ❀ ✿✿❀ x M ❣ ( ✦ dt ✭ t i ✮ ❂ x i ).

  15. Time Discretization 15 / 36 ■ Minimize w.r.t. Q dt ✭ x 0 ❀ x 1 ❀ ✿✿✿❀ x M ✮ ✷ P ✭ ✡ i ❂ 0 ❀ M D i ✮ ■ ✭ e t i ✮ ★ Q dt ❂ ✚ i becomes a margin condition : ❩ dQ dt ✭ x 0 ❀ x 1 ❀ ✿✿❀ x M ✮ ❂ ✚ i ✭ x i ✮ ✡ j ✻ ❂ i D j ■ Time integration of linear path in ✭ DMK ✮ : ✵ ✶ 1 ❩ ❳ dt ❦ x i ✰ 1 � x i ❦ 2 ❆ dQ dt ✭ x 0 ❀ x 1 ❀ ✿✿❀ x M ✮ inf ❅ Q ✷❊ ✡ i ❂ 0 ❀ M D i i ❂ 0 ❀ M � 1 ❊ ❂ ❢ Q dt ✷ P ✭ ✡ i ❂ 0 ❀ M D i ✮ ❀ ✭ e t i ✮ ★ Q dt ❂ ✚ i ❀ i ❂ 0 ❀ 1 ❣

  16. Multi-Marginal OT 16 / 36 ■ General Form of MMOT : ❩ inf c ✭ x 0 ❀ x 1 ❀ ✿✿❀ x M ✮ dQ ✭ x 0 ❀ x 1 ❀ ✿✿❀ x M ✮ Q ✷❊ ✡ i ❂ 0 ❀ M D i ❊ ❂ ❢ Q ✷ P ✭ ✡ i ❂ 0 ❀ M D i ✮ ❀ ✭ e t i ✮ ★ Q ❂ ✚ i ❀ i ❂ 0 ❀ 1 ❀ ✿✿❀ M ❣ ■ Ex. : Density Functional Theory (Friesecke et al, Butazzo et al (...) , Pass, ... ) def. 1 ❂ P ❦ x i � x j ❦ Margins : ✭ e i ✮ ★ Q ❂ ✖ ✚❀ i ❂ 0 ❀ ✿✿❀ M c i ❁ j Existence of Maps open ... ■ Generalized Euler Geodesics (Brenier 89)

  17. Multi-Marginal OT 17 / 36 ■ Ex. : Wassertein Barycenters (Agueh/Carlier (2011)) def. def. i ✕ i ❦ x i � B ✭ x 0 ❀ ✿✿❀ x M ✮ ❦ 2 ❂ P B ✭ x 0 ❀ ✿✿❀ x M ✮ ❂ P c i ✕ i x i Margins : ✭ e i ✮ ★ Q ❂ ✚ i ❀ i ❂ 0 ❀ ✿✿❀ M Barycenter : B ★ Q ... ■ Solomon et al (2015)

  18. Summary 18 / 36 1. Basic Introduction to Dynamic OT 2. Time Discretization and MultiMarginal OT 3. Entropic Regularization and IPFP/Sinkhorn 4. Scaling Algorithms 5. Schrödinger bridge and system 6. Application to Stochastic VMFGs

  19. Entropic regularization of OT 19 / 36 See Christian Leonard surveys for the connection with the Schrödinger problem in the continuous setting. Discretize in space D 0 : ❢ x i ❣ and D 1 : ❢ x j ❣ ✚ 0 ❂ P i ✖ i ✍ x i and ✚ 1 ❂ P j ✗ j ✍ y j c i j ❂ c ✭ x i ❀ x j ✮ ■ Entropic regularisation of MK : i j ✌ ✧ i j c i j ✰ ✧ ✌ ✧ i j ✭ log ✌ ✧ ✭ MK ✧ ✮ min ✌ ✷● P i j � 1 ✮ ● ❂ ❢ ✌ ✷ ❘ N ✂ N ❀ ✌ ✧ i j ✟✟ j ✌ ✧ i ✌ ✧ ✕ 0 ❀ P i j ❂ ✖ i ❀ P i j ❂ ✗ j ❣ ci j i j ❂ e � ■ Set ✌ ✧ ✧ i j KL ✭ ✌ ✧ i j ❥ ✌ ✧ ✭ MK ✧ ✮ min ✌ ✧ ✷● P i j ✮ KL ✭ f ❥ g ✮ ❂ f ✭ log ✭ f g ✮ � 1 ✮

  20. Iterative Proportional Fitting Procedure 20 / 36 Sinkhorn (67) Ruschendorf (95) Galichon (09) Cuturi (13) ... ij ✥ ✧ j ✗ j ✰ ✬ ✧ i ✖ i ✰ ✌ ✧ i j ✭ c i j � ✥ ✧ j � ✬ ✧ i ✰ ✧ ✭ log ✌ ✧ min ✌ ✧ i j max ❢ ✬ ✧ P i j � 1 ✮✮ i ❀✥ ✧ j ❣ ✌ ❄❀✧ ■ Optimal plan is a scaling : i j ❂ a ✧ i b ✧ j ✌ ✧ i j ✥✧ ✬✧ j i where a ✧ ✧ and b ✧ ✧ . i ❂ e j ❂ e ■ Margin constraints give : ✖ i ✗ j a ✧ and b ✧ i ❂ j ❂ . j ✌ ✧ i j b ✧ i ✌ ✧ i j a ✧ P P j i ■ IPFP is the relaxation : ✧❀ k ✰ 1 ✖ i ✗ j b ✧❀ k ✰ 1 2 a ❂ ❂ ✿ i j i j b ✧❀ k ✧❀ k ✰ 1 j ✌ ✧ P i ✌ ✧ 2 P i j a j i

  21. 1-D IPFP/Sinkhorn 21 / 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend