duality on value semigroups
play

Duality on Value Semigroups Philipp Korell Technische Universitt - PowerPoint PPT Presentation

Duality on Value Semigroups Philipp Korell Technische Universitt Kaiserslautern July 4, 2016 Joint work w/ Laura Tozzo & Mathias Schulze Example Complex algebroid curve R = C [[ x , y ]] / x 3 y + y 6 = C [[ x , y ]] /


  1. Duality on Value Semigroups Philipp Korell Technische Universität Kaiserslautern July 4, 2016 Joint work w/ Laura Tozzo & Mathias Schulze

  2. Example Complex algebroid curve R = C [[ x , y ]] / � x 3 y + y 6 � = C [[ x , y ]] / ( � x 3 + y 5 � ∩ � y � ) = C [[( t 5 1 , t 2 ) , ( − t 3 1 , 0 )]] ⊂ R = C [[ t 1 ]] × C [[ t 2 ]] = R / � x 3 + y 5 � × R / � y � ⊂ Q R = C [[ t 1 ]][ t − 1 1 ] × C [[ t 2 ]][ t − 1 2 ] Parametrization x �→ ( t 5 y �→ ( − t 3 1 , t 2 ) , 1 , 0 ) Discrete valuations ν i = ord t i : C [[ t i ]][ t − 1 ] → Z ∪ {∞} i

  3. Value Semigroup Definition R complex algebroid curve � multivaluation → Z s , ν = ( ν 1 , . . . , ν s ): Q reg R � value semigroup of R Γ R = ν ( R reg ) ⊂ N s . Remark Since ν ( 1 ) = 0 and ν ( ab ) = ν ( a ) + ν ( b ) , Γ R is a monoid.

  4. Example R = C [[ x , y ]] / � x 3 y + y 6 � ∼ = C [[( t 5 1 , t 2 ) , ( − t 3 1 , 0 )]] . Then Γ R = � ( 5 , 1 ) , ( 9 , 2 ) , ( 3 , 1 ) + N e 1 , ( 15 , 3 ) + N e 2 �

  5. Fractional Ideals Definition ◮ A regular fractional ideal (RFI) of R is an R -submodule E ⊂ Q R such that a E ⊂ R for some a ∈ R reg and E ∩ Q reg � = ∅ . R ◮ The value semigroup ideal of E is R ) ⊂ Z s . Γ E = ν ( E ∩ Q reg Remark Applying ν to R E ⊂ E yields Γ E + Γ R ⊂ Γ E .

  6. Definition The conductor of R is C R = R : Q R R , the largest ideal of R in R . Lemma C R = t γ R = ( t γ 1 1 , . . . , t γ s s ) R , where γ = min { α ∈ Γ R | α + N s ⊂ Γ R } is the conductor of Γ R .

  7. Properties of Value Semigroups (E0) There is an α ∈ E such that α + N s ⊂ E . Example α ( t 11 1 , t 3 2 )( C [[ t 1 ]] × C [[ t 2 ]]) ⊂ R

  8. Properties of Value Semigroups (E1) If α, β ∈ E , then ǫ = min { α, β } ∈ E . Example α β ǫ ( t 10 1 , t 2 2 ) + ( t 6 1 + t 25 1 , t 5 2 ) = ( t 6 1 + t 10 1 + t 25 1 , t 2 2 + t 5 2 )

  9. Properties of Value Semigroups (E2) For any α, β ∈ E with α i = β i for some i there is ǫ in E such that ǫ i > α i = β i and ǫ j ≥ min { α j , β j } for all j � = i with equality if α j � = β j . Example i ǫ β α j ( t 6 1 + t 10 1 + t 25 1 , t 2 2 + t 5 2 ) − ( t 10 1 , t 2 2 ) = ( t 6 1 + t 25 1 , t 5 2 )

  10. Good Semigroups and their Ideals Definition ◮ A submonoid S ⊂ N s with group of differences Z s is called a good semigroup if (E0), (E1) and (E2) hold for S . ◮ A good semigroup ideal (GSI) of S is a subset ∅ � = E ⊂ Z s such that ◮ E + S ⊂ E ( � (E0)), ◮ there is an α ∈ S such that α + E ⊂ S , ◮ E satisfies (E1) and (E2). Remark (Barucci, D’Anna, Fröberg) Not any good semigroup is a value semigroup.

  11. General algebraic hypotheses ◮ R one-dimensional semilocal Cohen–Macaulay ring � there are finitely many valuations of Q R containing R , all are discrete ◮ R analytically reduced � (E0) ◮ R has large residue fields � (E1) ◮ R residually rational � (E2) Definition We call a one-dimensional semilocal analytically reduced and residually rational Cohen–Macaulay ring with large residue fields admissible.

  12. Theorem Let R be an admissible ring, E a RFI of R. Then: ◮ Γ R is a good semigroup. ◮ Γ E is a good semigroup ideal. ◮ Γ E = � m ∈ Max ( R ) Γ E m . ◮ Γ E = Γ � E .

  13. Remark In general, ◮ Γ E : F � Γ E − Γ F , ◮ Γ E + Γ F � Γ EF , ◮ Γ E − Γ F not GSI, ◮ Γ E + Γ F not GSI.

  14. Example R = C [[( − t 4 1 , t 2 ) , ( − t 3 1 , 0 ) , ( 0 , t 2 ) , ( t 5 1 , 0 )]] E = � ( t 3 1 , t 2 ) , ( t 2 1 , 0 ) � R F = � ( t 3 1 , t 2 ) , ( t 4 1 , 0 ) , ( t 5 1 , 0 ) � R Γ R Γ E Γ F Γ E + Γ F not GSI

  15. Definition (Delgado) For α ∈ Z s , consider set s � { β ∈ Z s | α i = β i , α j < β j for all j � = i } . ∆( α ) = i = 1 β α i

  16. Definition For E ⊂ Z s , set ∆ E ( α ) = ∆( α ) ∩ E . β ∆ E ( α ) α i

  17. Definition The conductor of a good semigroup ideal E is γ E = min { α ∈ E | α + N s ⊂ E } , and we set τ = γ S − 1 . Theorem (Delgado / Campillo, Delgado, Kiyek) Let R be a local admissible ring. Then R is Gorenstein if and only if Γ R = { α ∈ Z s | ∆ S ( τ − α ) = ∅} ( Γ R symmetric).

  18. Example Irreducible plane curve R = C [[ x , y ]] / � x 7 − y 4 � ∼ = C [[ t 4 , t 7 ]] τ 0 0 1 2 3 4 4 5 6 7 7 8 8 9 10 11 11 12 12 13 14 14 15 15 16 16 17 18 18

  19. Example ∆ S ( τ − α ) = ∅ τ τ − α α

  20. Example ∆ S ( τ − α ) � = ∅ α τ τ − α

  21. Definition ◮ A RFI K is canonical if K : ( K : E ) = E for all RFI E . ◮ R is Gorenstein if R is a canonical ideal. Definition (D’Anna) The canonical semigroup ideal of a good semigroup S is S = { α ∈ Z s | ∆ S ( τ − α ) = ∅} . K 0 Remark R is Gorenstein if and only if Γ R = K 0 Γ R .

  22. Theorem (D’Anna) Let R be local and K a RFI such that R ⊂ K ⊂ R. Then ⇒ Γ K = K 0 K canonical ⇐ Γ R . Theorem (Pol) Let R be a Gorenstein algebroid curve and E a RFI. Then Γ R : E = { α ∈ Z s | ∆ Γ E ( τ − α ) = ∅} = Γ R − Γ E .

  23. Definition (KTS) Let S be a good semigroup. We call K a canonical semigroup ideal if ◮ K GSI ◮ If E GSI with K ⊂ E and γ K = γ E , then K = E . Theorem (KTS) The following are equivalent: ◮ K is a canonical semigroup ideal. ◮ α + K = K 0 S for some α ∈ Z s . ◮ K − ( K − E ) = E for all GSI E. If these are satisfied, then K − E = { β ∈ Z s | ∆ E ( τ − β ) = ∅} + α is a GSI.

  24. Example E is (E1) but not (E2), K 0 S − E not GSI, E � K 0 S − ( K 0 S − E ) . K 0 S E S K 0 K 0 S − ( K 0 S − E S − E )

  25. � � � Main Result Theorem (KTS) Let R be an admissible ring, K a RFI. ◮ K is canonical if and only if Γ K is canonical. ◮ If K is canonical, then E�→K : E { RFI of R } { RFI of R } � E�→ Γ E E�→ Γ E E �→ Γ K − E � { GSI of Γ R } { GSI of Γ R }

  26. Reference [KTS] Philipp Korell, Laura Tozzo, and Mathias Schulze: “Duality on value semigroups”, arXiv 1510.04072 (2015).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend