duality for simple multiple access networks
play

Duality for Simple Multiple Access Networks Iwan Duursma Department - PowerPoint PPT Presentation

Duality for Simple Multiple Access Networks Iwan Duursma Department of Mathematics and Coordinated Science Laboratory U of Illinois at Urbana-Champaign DIMACS Workshop on Network Coding December 15-17, 2015 Iwan Duursma (U Illinois) Duality


  1. Duality for Simple Multiple Access Networks Iwan Duursma Department of Mathematics and Coordinated Science Laboratory U of Illinois at Urbana-Champaign DIMACS Workshop on Network Coding December 15-17, 2015 Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 1 / 29

  2. Outline 1 - Reliability and Security 2 - Efficient repair 3 - Constrained codes and Duality Tail-biting trellises Simple multiple access networks Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 2 / 29

  3. 1 - Reliability and Security                                       High rank submatrices protect against erasures and eavesdroppers Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 3 / 29

  4. Details Erasure channel Encoding using G C yields a vector with entropy H ( C ) . For vectors observed outside the erased positions E ⊂ [ n ] , H ( C ) = H ( C |E ) (information gain) + I ( C ; E ) (equivocation) Wiretep channel II Decoding using G T D distinguishes vectors with entropy H ( D ) . For vectors observed in the eavesdropped positions E ⊂ [ n ] , H ( D ) = I ( D ; E ) (information gain) + H ( D |E ) (equivocation) � � H ( C |E ) , H ( D |E ) = rank for E = , Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 4 / 29

  5. Protection against erasures AND eavesdroppers Nested codes Combine encoding via G C with decoding via G T D Transmission rate reduces from H ( C ) to H ( C | D ⊥ ) in return for a higher threshold for the eavesdropper. We may assume wlog that D ⊥ ⊂ C (nested codes) For vectors observed outside E ⊂ [ n ] (legitimate receiver), H ( C | D ⊥ ) = H ( C ) − H ( D ⊥ ) = H ( C |E ) − H ( D ⊥ |E ) (information gain) + I ( C ; E ) − I ( D ⊥ ; E ) (equivocation) Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 5 / 29

  6. Main example (Reed-Solomon)  1 1 1 1 1 1 · · · · · · · · ·  x y z u v w   x 2 y 2 z 2 u 2 v 2 w 2     G RS =  x 3 y 3 z 3 u 3 v 3 w 3      x 4 y 4 z 4 u 4 v 4 w 4   x 5 y 5 z 5 u 5 v 5 w 5 · · · · · · · · ·     B = rank  = 6 .      Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 6 / 29

  7. 2 - Efficient repair Reed-Solomon codes provide maximum protection of a message against erasures.    is full rank    However repair using RS-codes is inefficient. For RS-codes,   repair bandwith = rank     . Other codes are more suitable when erasure repair is important (e.g. in distributed storage). Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 7 / 29

  8. MSR construction (Rashmi-Shah-Kumar 2010)  1 0 1 0 1 0 · · · · · · · · ·  x 1 y 1 z 1     0 x 0 y 0 z   G MSR =  x 2 y 2 z 2  0 0 0    x 3 x 2 y 3 y 2 z 3 z 2    x 3 y 3 z 3 0 0 0 · · · · · · · · ·    = 6 . B = rank ( k = 3 , α = 2 )  γ = repair bandwith = 4 ( d = 4 , β = 1 ) (modify if char � = 2) Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 8 / 29

  9. MBR construction (Rashmi-Shah-Kumar 2010)  1 0 0 1 0 0 · · · · · · · · ·  x 1 0 y 1 0     0 x 0 0 y 0   G MBR =   x 1 0 y 1 0     x 2 y 2 2 x 1 2 y 1   x 2 y 2 0 x 0 y · · · · · · · · ·    = 5 . B = rank ( k = 2 , α = 3 )  γ = repair bandwith = 3 ( d = 3 , β = 1 ) Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 9 / 29

  10. Storage vs bandwith trade-off MSR minimizes storage per disk. MBR minimizes repair bandwith. For exact repair solutions in between MBR and MSR, the optimal trade-offs are an open problem. Case n = k + 1 = d + 1 is solved Tian; Sasidharan, Senthoor, Kumar; D; Tian, Sasidharan, Aggarwal, Vaishampayan, Kumar; Mohajer, Tandon; Prakash, Krishnan; D’ Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 10 / 29

  11. Storing four bits on four disks x , z + t y , t + x x , y , z , t z , x + y t , y + z B = 4 n = 4 Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 11 / 29

  12. Reading four bits from any two disks x , z + t y , t + x x , z + t t , y + z z , x + y t , y + z α = 2 k = 2 Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 12 / 29

  13. Disk repair with help form any three disks x , z + t z + t y , t + x t + x + y z , x + y z , x + y t , y + z t β = 1 d = 3 Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 13 / 29

  14. Repair matrix The repair matrix summarizes storage and repair for a regenerating code. W 1 S 1 → 3 S 1 → 2 S 1 → 4 W 2 S 2 → 1 S 2 → 3 S 2 → 4 W 3 S 3 → 1 S 3 → 2 S 3 → 4 W 4 S 4 → 1 S 4 → 2 S 4 → 3 W i = data stored at node i S i → j = helper information from node i to node j Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 14 / 29

  15. [D - arxiv 2014] Theorem 1 Let B q = H ( W 1 ) + · · · + H ( W q ) + � H ( S i → j ) , such that B ≤ B q . Let q , q 1 , . . . , q m − 2 , r , s > 0 such that (explicit condition). Then m − 2 � mB ≤ B q + B q i + B r + s − rs β. i = 1 Theorem 2 Let B q = H ( W 1 ) + · · · + H ( W q ) + � H ( S M → L ) , such that B ≤ B q . For each ( M , L ) , let ℓ = | L | , m = | M | , and let r ≥ ℓ . Then � � B + ℓ B ≤ B q + ( B r + m − 1 + ( ℓ − 1 )( B r + m − 2 − β )) . ( M , L ) ( M , L ) Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 15 / 29

  16. [D arXiv 2015] Theorem 3 For any set of parameters ( n , k , d ) , and for 0 ≤ ℓ ≤ k , 0 ≤ v , � v + 2 � � v + 1 � � ℓ � B ≤ B k + ( v + 1 ) B k − ℓ − v β. 2 2 2 Independently (special cases) Prakash-Krishnan, arXiv 2015 Mohajer-Tandon, ITA/ISIT 2015a, ISIT2015b. Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 16 / 29

  17. 3 - Constrained codes David Forney (Talk at Allerton ’97) Does the Golay code have a generator matrix of the form  ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00 00 00 00 00 00 00  00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00 00 00 00 00 00     00 00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00 00 00 00 00     00 00 00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00 00 00 00       00 00 00 00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00 00 00     00 00 00 00 00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00 00     00 00 00 00 00 00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00     00 00 00 00 00 00 00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗       00 00 00 00 00 00 00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗     ∗∗ ∗∗ 00 00 00 00 00 00 00 ∗∗ ∗∗ ∗∗     ∗∗ ∗∗ ∗∗ 00 00 00 00 00 00 00 ∗∗ ∗∗   ∗∗ ∗∗ ∗∗ ∗∗ 00 00 00 00 00 00 00 ∗∗ Answer: Yes (Calderbank-Forney-Vardy 1999) Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 17 / 29

  18. Characteristic matrices (Koetter-Vardy 2003) A set of characteristic generators for the row space row G is a subset of n vectors such that 1) Spans of vectors start and end in distinct positions, and 2) The sum of the spanlengths of the vectors is minimal. A square matrix is called a characteristic matrix for G if its rows form a set of characteristic generators. Example  1 1 1 0 0   1 0 1 1 1  0 1 1 0 1 1 1 0 0 1         X = 0 0 1 1 0 Y = 0 1 1 1 0         0 1 0 1 1 0 1 1 1 0     1 0 0 0 1 1 0 1 1 1 Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 18 / 29

  19. Dual characteristic matrices Question Under what conditions is a pair of characteristic matrices in duality, i.e. when does a pair define dual trellises? Conjecture (KV 2003) For a choice of lexicographically first characteristic generators for G and for a matching choice of lexicographically first characteristic generators for H , the obtained tail-biting trellises are in duality. (Gleussen-Larssing and Weaver 2011) Counterexample to the conjecture. Characterization of dual characteristic matrices in terms of local duality of trellises Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 19 / 29

  20. (GLW 2011) Example  1 1 0 0   1 1 0 1  0 1 1 1 1 1 0 1     X = Y =     1 0 1 1 1 1 1 0     0 1 1 1 0 0 1 1     1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 X ′ = Y ′ =         1 0 1 1 1 1 1 0     1 0 1 1 0 0 1 1 Conjecture: X ∼ Y . Local duality: X ∼ Y ′ and X ′ ∼ Y . Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 20 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend