double parton scattering factorisation evolution and
play

Double parton scattering: factorisation, evolution and matching M. - PowerPoint PPT Presentation

Double parton scattering: factorisation, evolution and matching M. Diehl Deutsches Elektronen-Synchroton DESY REF (Resummation, Evolution, Factorization) Madrid, 13 to 16 Nov. 2017 DESY Introduction DPS: Colour Evolution and cross section


  1. Double parton scattering: factorisation, evolution and matching M. Diehl Deutsches Elektronen-Synchroton DESY REF (Resummation, Evolution, Factorization) Madrid, 13 to 16 Nov. 2017 DESY

  2. Introduction DPS: Colour Evolution and cross section TMD matching Summary Hadron-hadron collisions ◮ standard description based on factorisation formulae cross sect = parton distributions × parton-level cross sect ◮ net transverse momentum p T of hard-scattering products: • p T integrated cross sect � collinear factorisation • p T ≪ hard scale of interaction � TMD factorisation ◮ particles resulting from interactions between spectator partons unobserved M. Diehl Double parton scattering: factorisation, evolution and matching 2

  3. Introduction DPS: Colour Evolution and cross section TMD matching Summary Hadron-hadron collisions ◮ standard description based on factorisation formulae cross sect = parton distributions × parton-level cross sect ◮ net transverse momentum p T of hard-scattering products: • p T integrated cross sect � collinear factorisation • p T ≪ hard scale of interaction � TMD factorisation ◮ particles resulting from interactions between spectator partons unobserved ◮ spectator interactions can be soft � underlying event or hard � multiparton interactions ◮ here: double parton scattering with factorisation formula cross sect = double parton distributions × parton-level cross sections M. Diehl Double parton scattering: factorisation, evolution and matching 3

  4. Introduction DPS: Colour Evolution and cross section TMD matching Summary Single vs. double parton scattering (SPS vs. DPS) ◮ example: prod’n of two gauge bosons, transverse momenta q 1 and q 2 q 1 q 1 q 2 q 2 double scattering: single scattering: both | q 1 | and | q 2 | ≪ Q | q 1 | and | q 2 | ∼ hard scale Q | q 1 + q 2 | ≪ Q ◮ for transv. momenta ∼ Λ ≪ Q : dσ SPS dσ DPS 1 ∼ ∼ Q 4 Λ 2 d 2 q 1 d 2 q 2 d 2 q 1 d 2 q 2 but single scattering populates larger phase space : ≫ σ DPS ∼ Λ 2 1 σ SPS ∼ Q 2 Q 4 M. Diehl Double parton scattering: factorisation, evolution and matching 4

  5. Introduction DPS: Colour Evolution and cross section TMD matching Summary Single vs. double parton scattering (SPS vs. DPS) ◮ example: prod’n of two gauge bosons, transverse momenta q 1 and q 2 q 1 q 1 q 2 q 2 double scattering: single scattering: both | q 1 | and | q 2 | ≪ Q | q 1 | and | q 2 | ∼ hard scale Q | q 1 + q 2 | ≪ Q ◮ for small parton mom. fractions x double scattering enhanced by parton luminosity ◮ depending on process: enhancement or suppression from parton type (quarks vs. gluons), coupling constants, etc. M. Diehl Double parton scattering: factorisation, evolution and matching 5

  6. Introduction DPS: Colour Evolution and cross section TMD matching Summary A numerical example integrated cross section gauge boson pair production W + W + single scattering: qq → qq + W + W + suppressed by α 2 s W + W + J Gaunt et al, arXiv:1003.3953 M. Diehl Double parton scattering: factorisation, evolution and matching 6

  7. Introduction DPS: Colour Evolution and cross section TMD matching Summary Drell-Yan: factorisation for q T ≪ Q B B S H H ⇒ S H H A A ◮ fast-moving longitudinal gluons coupling to hard scattering • include in Wilson lines in parton density ◮ soft gluon exchange between left- and right-moving partons • include in soft factors = vevs of Wilson lines needs: eikonal approximation, Ward identities, Glauber cancellation • essential for establishing factorisation • permits resummation of Sudakov logarithms TMD factorisation Collins, Soper, Sterman 1980s; Collins 2011 M. Diehl Double parton scattering: factorisation, evolution and matching 7

  8. Introduction DPS: Colour Evolution and cross section TMD matching Summary Drell-Yan: factorisation for q T ≪ Q B B S H H ⇒ S H H A A • absorb soft factor into parton densities √ √ σ = ˆ σBSA = ˆ σ ( B S )( SA ) = ˆ σf B f A • S requires a rapidity cutoff for the gluons: right-moving gluons � f A , left-moving ones � f B • separation at central rapidity Y (or equivalent variable) A e − Y ) 2 B e + Y ) 2 ¯ ζ ¯ ζ = 2( xp + xp − ζ = Q 4 ζ = 2(¯ • resum Sudakov logarithms log( q T /Q ) via evolution equations ζ f B (¯ d d d log ζ f A ( ζ ) and ζ ) d log ¯ M. Diehl Double parton scattering: factorisation, evolution and matching 8

  9. Introduction DPS: Colour Evolution and cross section TMD matching Summary Drell-Yan: factorisation for q T ≪ Q B � 0 � − igt a dλ vA a ( λv + z ) W ( z ) = P exp � −∞ S H H W † W L ( − z/ 2) L ( z/ 2) W R ( z/ 2) W † R ( − z/ 2) A ◮ transverse variables • z Fourier conjugate to q : � x, z ; ¯ dσ/d 2 q ∝ d 2 z e i zq f A ( x, z ; ζ ) f B (¯ ζ ) � � � � � tr W † 2 ) W † 1 L ( z 2 ) W R ( z R ( − z 2 ) W L ( − z � 0 • soft factor S = 0 2 ) N c � d 2 q ( dσ/d 2 q ) have z = 0 • collinear factorisation: in ⇒ S = 1 � soft gluon exchanges cancel in sum over all graphs � no Sudakov logarithms M. Diehl Double parton scattering: factorisation, evolution and matching 9

  10. Introduction DPS: Colour Evolution and cross section TMD matching Summary Double parton scattering ◮ can generalise previous treatment from single to double Drell-Yan and other DPS processes M Buffing, T Kasemets, MD 2017 B B H 1 H 1 S H 1 H 1 S ⇒ H 2 H 2 H 2 H 2 A A ◮ basic steps can be repeated: • collinear gluons � Wilson lines in DPDs • soft gluons � soft factor MD, D Ostermeier, A Sch¨ afer 2011; MD, J Gaunt, P Pl¨ oßl, A Sch¨ afer 2015 M. Diehl Double parton scattering: factorisation, evolution and matching 10

  11. Introduction DPS: Colour Evolution and cross section TMD matching Summary Double parton scattering: colour complications ◮ DPDs have several colour combinations of partons • colour projection operators k ′ j ′ j k • singlet: P jj ′ ,kk ′ = δ jj ′ δ kk ′ / 3 z 1 / 2 + y z 2 / 2 − z 2 / 2 − z 1 / 2 + y 1 as in usual PDFs x 1 x 2 x 2 x 1 • octet: P jj ′ ,kk ′ = 2 t jj ′ a t kk ′ a 8 • for gluons: 8 A , 8 S , 10 , 10 , 27 ◮ corresponding combinations in soft factor z 1 / 2 + y z 2 / 2 − z 2 / 2 − z 1 / 2 + y • soft factor → matrix in colour space • for colour octet (and other non-singlets): W R t a W † R � = 1 when at same position ⇒ S � = 1 t a � Sudakov factors even in collinear factoris’n t a M Mekhfi 1988; A Manohar, W Waalewijn 2012 M. Diehl Double parton scattering: factorisation, evolution and matching 11

  12. Introduction DPS: Colour Evolution and cross section TMD matching Summary Coloured final states ◮ processes with coloured final states (jets etc) collinear factorisation only with measured small q T no TMD factorisation even for single scattering P Mulders, T C Rogers 2010 B • soft factor with more open colour indices H 1 H 1 S • to be contracted with hard scattering H 2 H 2 • for large distance y non-perturbative A ◮ looks grim for phenomenology . . . M. Diehl Double parton scattering: factorisation, evolution and matching 12

  13. Introduction DPS: Colour Evolution and cross section TMD matching Summary Simplification for collinear factorisation P ii ′ ,j ′ j R j j ′ i i ′ ◮ projector identity for Wilson lines at same position W † ( z ) = W † ( z ) W ( z ) W ( z ) ◮ includes all interactions ◮ also for adjoint Wilson lines j ′ j k k ′ (gluons) and mixed case P jj ′ ,k ′ k R ◮ use this to show • S for jet production etc. same as for Drell-Yan: = • S ( y ) is diagonal in colour: RR ′ S ( y ) ∝ δ RR ′ with R = 1 , 8 , . . . and octet 88 S ( y ) is same for quarks and gluons M. Diehl Double parton scattering: factorisation, evolution and matching 13

  14. Introduction DPS: Colour Evolution and cross section TMD matching Summary Collinear factorisation ◮ in collinear factorisation simple colour structure � σ DPS ∼ � R ˆ R ˆ d 2 y R F B ( y ) R F A ( y ) σ 1 σ 2 R √ with R F A = RR S R A and R F B likewise ◮ evolution of R F ( x 1 , x 2 , y ; µ 1 , µ 2 , ζ ) with Collins-Soper type equation: R F = R J ( y ; µ 1 , µ 2 ) R F R J = − R γ J ( µ 1 ) 2 ∂ ∂ ∂ log ζ ∂ log µ 1 • can choose separate factorisation scales µ 1 , µ 2 for hard scatters • for colour singlet have 1 J = 0 • for colour octet: 8 J ( y ) = kernel for rapidity evolution of single gluon TMD A Vladimirov 2016 ◮ solution has form R F ( x 1 , x 2 , y ; µ 1 , µ 2 , ζ ) = e − R E ( x 1 ,x 2 , y ; µ 1 ,µ 2 ,ζ ) R � F ( x 1 , x 2 , y ; µ 1 , µ 2 ) where R � F follows DGLAP equations in µ 1 and µ 2 with kernels R P ( µ ) M. Diehl Double parton scattering: factorisation, evolution and matching 14

  15. Introduction DPS: Colour Evolution and cross section TMD matching Summary TMD factorisation RR ′ S = S ( z 1 , z 2 , y ; Y ) nontrivial matrix in colour space ◮ ◮ rapidity evolution of S understood at perturbative two-loop level A Vladimirov 2016 ◮ assume that general structure valid beyond two loops: ∂Y S ( Y ) = � ∂ K S ( Y ) for Y ≫ 1 work towards an all-order proof: A Vladimirov 2017 √ ◮ define F A = s A ( s = matrix equivalent of S ) � R F B R F A ◮ cross section σ ∝ ˆ σ 1 ˆ σ 2 R B H 1 H 1 S H 2 H 2 A M. Diehl Double parton scattering: factorisation, evolution and matching 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend