double negation translation of intuitionistic modal
play

Double-Negation Translation of Intuitionistic Modal Logics in Coq - PowerPoint PPT Presentation

Double-Negation Translation of Intuitionistic Modal Logics in Coq Miriam Polzer & Ulrich Rabenstein November 7, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


  1. Double-Negation Translation of Intuitionistic Modal Logics in Coq Miriam Polzer & Ulrich Rabenstein November 7, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 1 / 16

  2. Intuitionistic Modal Logic i □ Z ϕ ::= ⊤ | ⊥ | a | ϕ 1 → ϕ 2 | ϕ 1 ∨ ϕ 2 | ϕ 1 ∧ ϕ 2 | □ ϕ a ∈ Vars The intuitionistic modal logic i □ Z : All intuitionistic tautologies and axiom Z Closure under MP and substitution Closure under generalization: If A valid, then □ A valid. □ ( A → B ) → ( □ A → □ B ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 2 / 16

  3. Intuitionistic Modal Logic i □ Z ϕ ::= ⊤ | ⊥ | a | ϕ 1 → ϕ 2 | ϕ 1 ∨ ϕ 2 | ϕ 1 ∧ ϕ 2 | □ ϕ a ∈ Vars Kripke-Semantics for i □ Z : Nonempty set of worlds Two relations: Intuitionistic relation R i , preorder Modal relation R m A frame condition , e.g. ∀ w 1 w 2 , ( ∃ w 3 , w 1 R i w 3 ∧ w 3 R m w 2 ) ⇒ ( ∃ w ′ 3 , w 1 R m w ′ 3 ∧ w ′ 3 R i w 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 2 / 16

  4. Natural Deduction for i □ Z Some of the rules . . . i □ Z ⊢ G ⇒ A G ′ is permutation of G (Perm) i □ Z ⊢ G ′ ⇒ A (In) i □ Z ⊢ A , G ⇒ A (Ax) s is a substitution i □ Z ⊢ G ⇒ s ( Z ) i □ Z ⊢ G ⇒ A ∨ B i □ Z ⊢ A , G ⇒ C i □ Z ⊢ B , G ⇒ C ( ∨ E ) i □ Z ⊢ G ⇒ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 3 / 16

  5. Natural Deduction for i □ Z The only rule for box, as proposed by Bellin, De Paiva and Ritter: i □ Z ⊢ A 1 . . . A n ⇒ B i □ Z ⊢ G ⇒ □ A 1 i □ Z ⊢ G ⇒ □ A n . . . ( □ IE ) i □ Z ⊢ G ⇒ □ B Classical counterpart of an intuitionistic modal logic: cl □ Z := i □ ( Z ∧ ( ¬¬ a → a )) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 4 / 16

  6. Glivenko’s translation A glv := ¬¬ A Theorem Formula A is a classical tautology if and only if A glv is an intuitionistic tautology. i □ Z ⊢ A glv ⇔ cl □ Z ⊢ A ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 5 / 16

  7. Glivenko’s translation i □ Z ⊢ A glv ⇔ cl □ Z ⊢ A Example □ ( ¬¬ p → p ) ∈ cl □ but ¬¬ □ ( ¬¬ p → p ) ̸∈ i □ a V ( p ) = { c } Intuitionistic Relation c b Modal Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 6 / 16

  8. The translation triangle Translation Properties characterization cl □ ⊢ A ↔ A t adequateness ∀ A , cl □ Z ⊢ A ⇔ i □ Z ⊢ A t (..for a certain class of axioms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 7 / 16

  9. The translation triangle Translation Properties characterization cl □ ⊢ A ↔ A t adequateness ∀ A , cl □ Z ⊢ A ⇔ i □ Z ⊢ A t (..for a certain class of axioms) Translations: Glivenko: A glv := ¬¬ A Kolmogorov: ¬¬ in front of every subformula Refined Gödel-Gentzen: simplfy Kolmogorov from the outside Kuroda: simplify Kolmogorov from the inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 7 / 16

  10. The translation triangle The Triangle ggr glv kur kol For any translations t 1 , t 2 in The Triangle : i □ Z ⊢ ( A t 1 ↔ A t 2 ) ⇒ sufficient to show adequateness for one translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 8 / 16

  11. Double Negation Tautologies For any translations t 1 , t 2 in The Triangle : i □ Z ⊢ ( A t 1 ↔ A t 2 ) ⇒ sufficient to show adequateness for one translation Technical work: i □ Z ⊢ ¬¬ ( ¬¬ A ∧ ¬¬ B ) ↔ ¬¬ ( A ∧ B ) i □ Z ⊢ ¬¬ ( ¬¬ A ∨ ¬¬ B ) ↔ ¬¬ ( A ∨ B ) i □ Z ⊢ ¬¬ ( ¬¬ A → ¬¬ B ) ↔ ( ¬¬ A → ¬¬ B ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 9 / 16

  12. Reduction theorem Theorem (Reduction theorem) For t in the triangle ( ∀ A , cl □ Z ⊢ A ⇔ i □ Z ⊢ A t ) ⇔ i □ Z ⊢ Z t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 10 / 16

  13. Reduction theorem Theorem (Reduction theorem) For t in the triangle ( ∀ A , cl □ Z ⊢ A ⇔ i □ Z ⊢ A t ) ⇔ i □ Z ⊢ Z t Proof. ⇒ Obviously cl □ Z ⊢ Z , by the premise i □ Z ⊢ Z t . ⇐ Let i □ Z ⊢ Z t . ← Let i □ Z ⊢ A t , then cl □ Z ⊢ A t and thus cl □ Z ⊢ A . → Induction on cl □ Z ⊢ A . On the blackboard... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 10 / 16

  14. Envelopes Definition ∀ Z , i □ Z ⊢ ¬¬ sub ¬¬ ( A ) → A t A is a pre-envelope iff ∀ Z , i □ Z ⊢ A t → ¬¬ sub ¬¬ ( A ) A is a post-envelope iff ∀ Z , i □ Z ⊢ A t ↔ ¬¬ sub ¬¬ ( A ) A is a ¬¬ -envelope iff ∀ A , i □ Z ⊢ A t ↔ ¬¬ sub ¬¬ ( A ) Z is a Kuroda-envelope iff Example Box-free formulas are ¬¬ -envelopes. Shallow formulas with no disjunction under box are ¬¬ -envelopes. Implication-free formulas are pre-envelopes. Negations of pre-envelopes are post-envelopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 11 / 16

  15. Adequateness conditions Theorem Let B be a post-envelope and C be a pre-envelope then ∀ A , cl □ ( B → C ) ⊢ A ⇔ i □ ( B → C ) ⊢ A t . Let Z be a ¬¬ -envelope or a Kuroda-envelope, then ∀ A , cl □ Z ⊢ A ⇔ i □ Z ⊢ A t . Proof. follows from the reduction of adequateness and the definition of envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 12 / 16

  16. Glivenko-Translation Definition Kuroda-axiom □ ¬¬ A → ¬¬ □ A Theorem 1 Assuming Kuroda-axiom, glv becomes equivalent to kur,kol and ggr. 2 i □ Z ⊢ □ ¬¬ A → ¬¬ □ A ⇒ ( ∀ A , cl □ Z ⊢ A ⇔ i □ Z ⊢ A t ) Proof. 1 by straightforward induction 2 since Kuroda-axiom is a Kuroda-envelope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 13 / 16

  17. Our experience with Coq help for generating goals and premises during inductions proofs by auto with hint databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 14 / 16

  18. Our experience with Coq help for generating goals and premises during inductions proofs by auto with hint databases Lemma weakening: forall A B G Z, KIbox Z G B -> KIbox Z (A :: G) B. intros. induction H; eauto 3 with KIboxDB. Qed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 14 / 16

  19. Our experience with Coq help for generating goals and premises during inductions proofs by auto with hint databases Lemma weakening: forall A B G Z, KIbox Z G B -> KIbox Z (A :: G) B. intros. induction H; eauto 3 with KIboxDB. Qed. Lemma eq_kol_kur : forall Z f, KIbox Z [] ((kol f) <<->> (kur f)). unfold kur. intros; induction f; simpl. - apply eq_split; split; apply imp_id. - eauto with eq_impDB. - eauto with eq_andDB. - eauto with eq_orDB. - apply eq_dneg. eq_dest IHf. eq_split; apply box_imp; assumption. - apply tt_dneg. - apply ff_dneg. Qed. a framework for permutations was a big help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miriam Polzer & Ulrich Rabenstein DNegMod November 7, 2016 14 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend