double field theory string field theory and t duality
play

Double Field Theory, String Field Theory and T -Duality CMH & - PowerPoint PPT Presentation

Double Field Theory, String Field Theory and T -Duality CMH & Barton Zwiebach What is string theory? Supergravity limit - misses stringy features Winding modes, T -duality, cocycles, algebraic structure not Lie algebra,... On


  1. Double Field Theory, String Field Theory and T -Duality CMH & Barton Zwiebach

  2. What is string theory? • Supergravity limit - misses stringy features • Winding modes, T -duality, cocycles, algebraic structure not Lie algebra,... • On torus extra dual coordinates { ˜ x a } { x a } • String field theory: interactions, T -duality • Double field theory on doubled torus g ab ( x a , ˜ x a ) , b ab ( x a , ˜ x a ) , φ ( x a , ˜ x a ) Earlier versions: Siegel, Tseytlin

  3. Strings on a Torus R n − 1 , 1 × T d • Coordinates x i = ( y µ , x a ) x a ∼ x a + 2 π • Momentum p i = ( k µ , p a ) • Winding ( p a , w a ) ∈ Z 2 d w a • Fourier transform ( k µ , p a , w a ) → ( y µ , x a , ˜ x a ) • Doubled Torus R n − 1 , 1 × T 2 d x a ∼ ˜ ˜ x a + 2 π • String Field Theory gives infinite set of fields φ ( y µ , x a , ˜ x a ) n + d = D = 26 or 10

  4. T -Duality • Interchanges momentum and winding • Equivalence of string theories on dual backgrounds with very different geometries • String field theory symmetry, provided fields depend on both Kugo, Zwiebach x, ˜ x • For fields not Buscher ψ ( y ) ψ ( y, x, ˜ x ) • Aim: generalise to fields ψ ( y, x, ˜ x ) Generalised T -duality Dabholkar & CMH

  5. Free field equn, M mass in D dimensions M 2 ≡ − ( k 2 + p 2 + w 2 ) = 2 α ′ ( N + ¯ N − 2) Constraint N − p a w a = 0 L 0 − ¯ L 0 = N − ¯ p a w a = 0 M 2 = 0 Massless states N = ˜ N = 1 Constrained fields φ ( y, x, ˜ x ) ∂ ∂ ∆ ≡ − 2 ∆ φ = 0 α ′ ∂ x a ∂ ˜ x a h ij ( y µ , x a , ˜ x a ) , b ij ( y µ , x a , ˜ x a ) , d ( y µ , x a , ˜ x a ) h ij → { h µ ν , h µa , h ab }

  6. α ′ = 1 Torus Backgrounds � η µ ν � � 0 � 0 0 E ij ≡ G ij + B ij G ij = , B ij = G ab B ab 0 0 x i = { y µ , x a } x i = { ˜ x a } = { 0 , ˜ x a } ˜ y µ , ˜ Left and Right Derivatives ∂ ∂ ∂ ∂ ¯ D i = ∂ x i − E ik , D i = ∂ x i + E ki ∂ ˜ ∂ ˜ x k x k ∆ = 1 D 2 ) = − 2 ∂ ∂ 2( D 2 − ¯ ∂ ˜ ∂ x i x i � = 1 2( D 2 + ¯ D 2 = G ij D i D j D 2 )

  7. Kinetic Operator � = 1 2( D 2 + ¯ D 2 ) = ∂ t H ( E ) ∂ � ∂ � ∂ ˜ x i ∂ = ∂ ∂ x j D × D E ij ≡ G ij + B ij Generalised Metric 2 D × 2 D � G − BG − 1 B BG − 1 � H ( E ) = − G − 1 B G − 1

  8. Closed String Field Theory Matter CFT + Ghost CFT: General State � � � ψ I ( k, p, w ) V I | k, p, w � | Ψ � = dk p,w I or in position space � � x ) V I | y, x, ˜ | Ψ � = [ dydxd ˜ x ] ψ I ( y, x, ˜ x � I Vertex operators, ghost number 2 V I Infinite set of fields ψ I ( y, x, ˜ x ) SFT gives action for component fields

  9. Closed String Field Theory Zwiebach S = 1 0 Q | Ψ � + 1 3! { Ψ , Ψ , Ψ } + 1 2 � Ψ | c − 4! { Ψ , Ψ , Ψ , Ψ } + · · · Symmetry δ Ψ = Q Λ + [ Λ , Ψ ] + . . . String fields ghost number 2, parameters | Λ � ghost number 1 are constrained: ( b 0 − ¯ ( L 0 − ¯ L 0 ) | Ψ � = 0 , b 0 ) | Ψ � = 0 , ( b 0 − ¯ ( L 0 − ¯ L 0 ) | Λ � = 0 , b 0 ) | Λ � = 0 , String Products [ A, B ] , [ A, B, C ] , [ A, B, C, D ] , ... { Ψ , Ψ , ..., Ψ } = � Ψ | c − 0 [ Ψ , ..., Ψ ] �

  10. � d θ 2 π e i θ ( L 0 − ¯ L 0 ) b − 0 [ Ψ 1 , Ψ 2 ] ′ [ Ψ 1 , Ψ 2 ] ≡ [A,B]’ inserts the states A,B in 3-punctured sphere that defines the vertex [ A, B ] = ( − ) AB [ B, A ] Graded, like a super-Lie bracket [ A, [ B, C ]] ± [ B, [ C, A ]] ± [ C, [ A, B ]] = Q [ A, B, C ] ± [ QA, B, C ] ± [ A, QB, C ] ± [ A, B, QC ] Failure of graded Jacobi = failure of Q to be a derivation Homotopy Lie Alegebra

  11. Massless Fields − 1 � � α j 2 e ij ( p ) α i | Ψ � = [ dp ] − 1 ¯ − 1 c 1 ¯ c 1 � + d ( p ) ( c 1 c − 1 − ¯ c 1 ¯ c − 1 ) + ... | p � � � � − 1 c 1 − i ¯ c 1 + µ ( p ) c + i λ i ( p ) α i α i | Λ � = [ dp ] λ i ( p ) ¯ − 1 ¯ | p � 0 • Use in action, gauge transformations • Fix symmetry, eliminate auxiliary fields µ • Gives action and symmetries for e ij = h ij + b ij , d • Background E ij = G ij + B ij

  12. Quadratic Action � 1 2 e ij � e ij + 1 D j e ij ) 2 + 1 � S (2) = 4( ¯ 4( D i e ij ) 2 [ dxd ˜ x ] − 2 d D i ¯ � D j e ij − 4 d � d Invariant under D j λ i + D i ¯ ¯ δ e ij = λ j , δ d = − 1 4 D · λ − 1 D · ¯ ¯ λ 4 ∆ λ = ∆ ¯ using constraint λ = 0 Discrete Symmetry e ij → e ji , D i → ¯ D i , ¯ D i → D i , d → d

  13. Comparison with Conventional Actions ∂ ˜ Take ∂ i ≡ G ik B ij = 0 ∂ ˜ x k D i = ∂ i − ˜ D i = ∂ i + ˜ ¯ ∂ i , ∂ i � = ∂ 2 + ˜ ∆ = − 2 ∂ i ˜ ∂ 2 ∂ i e ij = h ij + b ij � Usual quadratic action dx L [ h, b, d ; ∂ ] 1 4 h ij ∂ 2 h ij + 1 2( ∂ j h ij ) 2 − 2 d ∂ i ∂ j h ij L [ h, b, d ; ∂ ] = − 4 d ∂ 2 d + 1 4 b ij ∂ 2 b ij + 1 2( ∂ j b ij ) 2

  14. Double Field Theory Action � S (2) = � L [ h, b, d ; ∂ ] + L [ h, b, − d ; ˜ [ dxd ˜ x ] ∂ ] ∂ k h ik )( ∂ j b ij ) − 4 d ∂ i ˜ + ( ∂ k h ik )(˜ ∂ j b ij ) + (˜ ∂ j b ij Action + dual action + strange mixing terms ∂ i ǫ j + ∂ j ǫ i + ˜ ǫ j + ˜ δ h ij = ∂ i ˜ ∂ j ˜ ǫ i , δ b ij = − (˜ ∂ i ǫ j − ˜ ∂ j ǫ i ) − ( ∂ i ˜ ǫ j − ∂ j ˜ ǫ i ) , δ d = − ∂ · ǫ + ˜ ∂ · ˜ ǫ . Diffeos and B-field transformations mixed

  15. Dilaton ∂ i ǫ j + ∂ j ǫ i + ˜ ǫ j + ˜ δ h ij = ∂ i ˜ ∂ j ˜ ǫ i , δ d = − ∂ · ǫ + ˜ ∂ · ˜ ǫ . φ = d + 1 4 η ij h ij invariant under transformation ǫ In non-linear theory d is a density, dilaton scalar is φ e − 2 d = e − 2 φ √− g φ = d − 1 ˜ 4 η ij h ij invariant under transformation ˜ ǫ -duality d is invariant, φ → ˜ Dual dilaton. Under T φ

  16. Cubic Terms in Action � � 4 e ij ( D i ¯ D j d ) d + 4 d 2 � d [ dxd ˜ x ] + 1 � � ( D i e kl )( ¯ D j e kl ) − ( D i e kl ) ( ¯ D l e kj ) − ( D k e il )( ¯ D j e kl ) 4 e ij + 1 D k e ik + D i D k e kj ) + 1 2( D k e ij ) 2 + 1 � 2 e ij ( ¯ D j ¯ 2( ¯ D k e ij ) 2 2 d + ( D i e ij ) 2 + ( ¯ D j e ij ) 2 � � D j λ i + 1 � � δ λ e ij = ¯ ( D i λ k ) e kj − ( D k λ i ) e kj + λ k D k e ij 2 action invariant δ λ d = − 1 4 D · λ + 1 to this order 2( λ · D ) d

  17. Linearised Symmetries: diffeos on doubled space? ∂ i ǫ j + ∂ j ǫ i + ˜ ǫ j + ˜ δ h ij = ∂ i ˜ ∂ j ˜ ǫ i , δ b ij = − (˜ ∂ i ǫ j − ˜ ∂ j ǫ i ) − ( ∂ i ˜ ǫ j − ∂ j ˜ ǫ i ) , δ d = − ∂ · ǫ + ˜ ∂ · ˜ ǫ . Non-linear terms & algebra NOT doubled diffeos ⇒ Diffeos after field redefs ij ≡ e ij ± 1 e ± k e kj + O ( e 3 ) 2 e i For fields independent of gives diffeos x, δ e + ˜ ǫ ij For fields independent of gives diffeos ˜ x, δ e − ǫ ij No field redef can give both kinds of diffeo

  18. T -Duality Transformations of Background � a � b T -duality g = ∈ O ( d, d ; Z ) c d E ′ = ( aE + b )( cE + d ) − 1 � ˜ � x i transforms as a vector X ≡ x i � ˜ � � a � � ˜ � x ′ b x X ′ = = gX = x ′ c d x

  19. T -Duality is a Symmetry of the Action Fields e ij ( x, ˜ x ) , d ( x, ˜ x ) Background E ij E ′ = ( aE + b )( cE + d ) − 1 � ˜ � � a � � ˜ � x ′ b x X ′ = = gX = x ′ c d x Action invariant if: k ¯ l e ′ M ≡ d t − E c t kl ( X ′ ) e ij ( X ) = M i M j M ≡ d t + E t c t ¯ d ( X ) = d ′ ( X ′ )

  20. Conjecture for full non-linear transformations: E ′ ( X ′ ) = ( a E ( X ) + b )( c E ( X ) + d ) − 1 E = E + e d ′ ( X ′ ) = d ( X ) Linearising in gives previous result e ij

  21. Projectors and Cocycles Naive product of constrained fields does not satisfy constraint 0 Ψ 2 = 0 but 0 ( Ψ 1 Ψ 2 ) � = 0 L − 0 Ψ 1 = 0 , L − L − but ∆ ( AB ) � = 0 ∆ A = 0 , ∆ B = 0 String product has explicit projection � d θ 2 π e i θ ( L 0 − ¯ L 0 ) b − 0 [ Ψ 1 , Ψ 2 ] ′ [ Ψ 1 , Ψ 2 ] ≡ Double field theory requires projections, novel forms SFT has non-local cocycles in vertices, DFT should too Cocycles and projectors not needed in cubic action

  22. Double Field Theory • New limit of strings, captures some of the magic of string theory • Constructed cubic action, quartic will have new stringy features • T -duality, cocycles, homotopy Lie, constraints • Simpler than SFT, can address stringy issues in simpler setting • Generalised Geometry doubles Tangent space, DFT doubles coordinates. Geometry?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend